Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt 5 (141)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.1 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.

C. 12.

D. 30.

Câu 2. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √
3
3

2a 3
a 3
a 3
.
B.
.
C.


.
D. a3 3.
A.
3
3
6
q
2
Câu 3. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
Câu 4. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 12.

C. 6.

D. 8.

Câu 5. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3

.
B.
.
C.
.
D. a3 .
A.
24
12
6
Câu 6. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 8 m.
C. 24 m.
D. 12 m.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 7. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2
a3 3
2
.
B. 2a 2.
.

D.
.
A.
C.
24
12
24

x2 + 3x + 5
Câu 8. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 1.
C. 0.
D. − .
4
4
Câu 9. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 2.

B. 0.

C. +∞.

D. 1.

2

x
Câu 10. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = , m = 0.
C. M = e, m = 1.
D. M = e, m = 0.
e
e
Câu 11. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là
√ với đáy và S C = a 3.3 √

3
a 6
a 3
2a3 6
a3 3
A.
.
B.
.
C.
.

D.
.
12
2
9
4
2n + 1
Câu 12. Tính giới hạn lim
3n + 2
3
2
1
A. .
B. .
C. 0.
D. .
2
3
2
Trang 1/10 Mã đề 1


Câu 13. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. .
B. − .
C. 2.
D. −2.
2

2
Câu 14. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 27 lần.
!
!
!
1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 15. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2016.
C. T = 1008.
D. T = 2017.
2017
Câu 16. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m ≥ 0.
C. m ≤ 0.
D. m > − .
4
4
1
Câu 17. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 2.
D. 3.
Câu 18. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng


14 3
20 3
.
B. 6 3.
C. 8 3.
D.

.
A.
3
3
1 − 2n
Câu 19. [1] Tính lim
bằng?
3n + 1
2
2
1
A. 1.
B. .
C. − .
D. .
3
3
3
[ = 60◦ , S O
Câu 20. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng


a 57
a 57
2a 57
A.
.

B.
.
C. a 57.
D.
.
17
19
19
Câu 21. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 7 năm.
C. 10 năm.
D. 8 năm.
log2 240 log2 15
Câu 22. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 4.
C. 1.
D. 3.
Câu 23. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1637
1079
23

A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
Câu 24. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
Trang 2/10 Mã đề 1


(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Khơng có câu nào C. Câu (I) sai.
sai.
Câu 25. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 8.
C. 30.

D. Câu (II) sai.


D. 20.

Câu 26. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −5.
D. −9.
Câu 27.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
4
2




a3 2
C.
.
12




a3 2
D.
.
6

Câu 28. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
A. 0 < m ≤ .
4
4
4
Câu 29. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 13.
C. Không tồn tại.
D. 9.
2

2

Câu 30. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.

B. y(−2) = −18.
C. y(−2) = 22.
D. y(−2) = 2.
x−1 y z+1
= =

Câu 31. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x + y − z = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 32. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Năm tứ diện đều.
Câu 33. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4





a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
12
36
6
Câu 34. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
Câu 35. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là

3
3
a 3
a 3
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
24
48
48
16
Câu 36. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 9 mặt.
D. 6 mặt.
Trang 3/10 Mã đề 1


log 2x

Câu 37. [3-1229d] Đạo hàm của hàm số y =
x2

1 − 2 ln 2x
1 − 4 ln 2x
1
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
2x ln 10
2x ln 10
x3
Câu 38. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 39. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 5 mặt.

D. 3 mặt.

Câu 40. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
 π
x
Câu 41. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


1 π3
2 π4
3 π6
A.
e .
B. e .
C.
e .
D. 1.
2
2
2
Câu 42. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.

B. 68.
C. 34.
D.
.
17
x2 − 9
Câu 43. Tính lim
x→3 x − 3
A. +∞.
B. −3.
C. 3.
D. 6.
Câu 44. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Có một.
D. Khơng có.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 45. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là

A. [2; +∞).
B. (2; +∞).
C. (−∞; 2].
D. (−∞; 2).
Câu 46. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
tan x + m
nghịch biến trên khoảng
Câu 47. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (1; +∞).
D. (−∞; −1) ∪ (1; +∞).
Câu 48. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
2a3 3
a3
4a3 3
a3
A.
.
B.
.
C.
.
D.
.

3
3
3
6
Câu 49. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m ≥ .
D. m < .
4
4
4
4
Câu 50. [1] !Tập xác định của hàm số y! = log3 (2x + 1) là
!
!
1
1
1
1
A.
; +∞ .
B. −∞; .
C. − ; +∞ .
D. −∞; − .
2

2
2
2
Trang 4/10 Mã đề 1


2

Câu 51. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 6.
C. 7.

D. 5.

Câu 52. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là


a3
a3 3
a3 3
.
B.
.
C.
.
D. a3 .

A.
2
3
6
x3 − 1
Câu 53. Tính lim
x→1 x − 1
A. +∞.
B. 3.
C. 0.
D. −∞.



x = 1 + 3t




Câu 54. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
1
+
3t
x
=
−1
+
2t
x
=
1
+
7t
x = −1 + 2t

















A. 
B. 
.
D. 
y = 1 + 4t .
y = −10 + 11t . C. 
y=1+t
y = −10 + 11t .

















z = 1 − 5t
z = −6 − 5t
z = 1 + 5t
z = 6 − 5t
Câu 55. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 6510 m.
C. 1202 m.
D. 1134 m.
Câu 56. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

B. 3 − 4 2.
C. 3 + 4 2.
A. −3 + 4 2.


D. −3 − 4 2.

Câu 57. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.

A. 212 triệu.
B. 220 triệu.
C. 210 triệu.
D. 216 triệu.
Câu 58. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối 20 mặt đều.

D. Khối tứ diện đều.

Câu 59. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối bát diện đều. D. Khối tứ diện đều.



x=t




Câu 60. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)





z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
Câu 61. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.
D. {3; 4}.
x−2
Câu 62. Tính lim
x→+∞ x + 3
2

A. −3.
B. 2.
C. − .
D. 1.
3
Trang 5/10 Mã đề 1


x+2
Câu 63. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 3.
C. Vô số.
D. 1.
2n + 1
Câu 64. Tìm giới hạn lim
n+1
A. 3.
B. 0.
C. 1.
D. 2.

Câu 65. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. Vô số.

D. 64.
log(mx)
Câu 66. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m ≤ 0.


Câu 67.
√ Tìm giá trị lớn nhất của hàm số y = x + 3 + 6√− x

A. 3 2.
B. 3.
C. 2 3.
D. 2 + 3.
Câu 68. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; 0) và (1; +∞). C. (−1; 0).
D. (−∞; −1) và (0; +∞).
Câu 69. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 22016 .
D. 1.
Câu 70. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).

B. lim+ f (x) = lim− f (x) = +∞.
x→a

C. f (x) có giới hạn hữu hạn khi x → a.

x→a

x→a

x→a

x→a

D. lim+ f (x) = lim− f (x) = a.

Câu 71. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. [6, 5; +∞).

D. (−∞; 6, 5).

Câu 72. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
C. 1.
D.
.
A. 2.
B. .

2
2
Câu 73. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 3
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
48
24
24
8
!4x
!2−x
2
3
Câu 74. Tập các số x thỏa mãn



#
" 3
! 2
"
!
#
2
2
2
2
A. −∞; .
B. − ; +∞ .
C.
; +∞ .
D. −∞; .
5
3
5
3
Câu 75. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vơ nghiệm.
C. 1 nghiệm.

D. 2 nghiệm.

Câu 76. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng

(S AB)
5a
8a
a
2a
A.
.
B.
.
C.
.
D. .
9
9
9
9
0 0
0 0 0
Câu 77. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tứ giác.
Trang 6/10 Mã đề 1


C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
2x + 1
x→+∞ x + 1
1
C. 2.

D. 1.
B. .
2
[2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
B. .
C. .
D. 4.
4
2
Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó

Câu 78. Tính giới hạn lim
A. −1.

Câu 79.
1
A. .
8
Câu 80.
là:
A. 72cm3 .

B. 27cm3 .

C. 64cm3 .
D. 46cm3 .
ln2 x
m

Câu 81. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 32.
C. S = 24.
D. S = 22.
Câu 82. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 4 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 8 lần.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 83. Cho
x2
1
A. 1.
B. 3.
C. −3.
D. 0.
x+3
nghịch biến trên khoảng
Câu 84. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?

A. 1.
B. Vô số.
C. 3.
D. 2.
Câu 85. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 86. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
.
B. .
A.
n
n

1
C. √ .
n

D.

Câu 87. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (−∞; 1).

C. (0; 2).

n+1
.
n

D. (2; +∞).

Câu 88. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. a.
B. .
C. .
D.
.
3
2
2
Câu 89. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 5
a3 6
a3 15

3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
Câu 90. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
B.
f (x)dx = f (x).

f (x)dx = F(x) + C.

C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Trang 7/10 Mã đề 1



Câu 91. √Xác định phần ảo của số
phức
z

=
(
2 + 3i)2

A. −6 2.
B. 6 2.
C. −7.

D. 7.

Câu 92. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m < 0.
C. m , 0.

D. m = 0.

Câu 93.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
dx = ln |x| + C, C là hằng số.
B.
dx = x + C, C là hằng số.
A.
Z
Z x
xα+1
+ C, C là hằng số.
D.
0dx = C, C là hằng số.

C.
xα dx =
α+1
Câu 94. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

2
2
2
a 7
a 5
11a
a2 2
A.
.
B.
.
C.
.
D.
.
8
16
32
4
Câu 95. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng

3b + 2ac
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
D.
.
c+3
c+2
c+2
c+1
Z 3
x
a
a
Câu 96. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 16.
C. P = 4.

D. P = −2.
Câu 97. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 98. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim un = c (un = c là hằng số).
Câu 99. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

B. lim qn = 0 (|q| > 1).
1
D. lim k = 0.
n
C. Khối tứ diện đều.

D. Khối lập phương.

Câu 100. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.

1
B. lim √ = 0.
n

1
= 0 với k > 1.
D. lim un = c (Với un = c là hằng số).

nk
Câu 101.
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
√ [4-1246d] Trong tất cả
A. 3.
B. 5.
C. 2.
D. 1.
C. lim

Câu 102. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > 0.
C. m > −1.

D. m ≥ 0.

Câu 103. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m < 3.
D. m ≥ 3.
Câu 104. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và√S C bằng


a 6
a 6

a 6
A.
.
B.
.
C. a 6.
D.
.
2
3
6
Trang 8/10 Mã đề 1


Câu 105. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 144.

C. 24.

D. 2.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 106. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 4.
B. 5.

C. 2.
D. 3.
Câu 107. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.

A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
3

Câu 108. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e3 .
C. e5 .
D. e.
1 + 2 + ··· + n
Câu 109. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 0.
1
C. lim un = .
D. lim un = 1.
2
Câu 110. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 12.
C. 8.
D. 6.

Câu 111.
Cho hàm số
Z
Z f (x), g(x) liên tục trên R. Trong các
Z mệnh đề sau, mệnhZđề nào sai? Z
k f (x)dx = f

A.
Z
C.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

B.
Z
D.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

1
Câu 112. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên

3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3.
C. m = −3, m = 4.
D. m = 4.
Câu 113.
Các khẳngZđịnh nào sau đây là sai?
Z
A.
Z
C.

k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).

Z
B.
Z
D.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.


f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.

4

Câu 114. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
5
7
5
A. a 8 .
B. a 3 .
C. a 3 .

√3
a2 bằng
2

D. a 3 .

Câu 115. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 6.
C. V = 4.
D. V = 5.
Câu 116. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi

cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.424.000.
D. 102.016.000.
Câu 117.
√ Thể tích của khối lăng trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
.
B. .
C.
.
A.
12
4
4
Câu 118. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.


3
D.
.
2
D. {3; 4}.

Trang 9/10 Mã đề 1


Câu 119. [1-c] Giá trị của biểu thức
A. 4.

log7 16
log7 15 − log7

B. 2.

15
30

bằng

C. −2.

D. −4.

Câu 120. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 121. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD


3

3
10a
A. 10a3 .
B. 40a3 .
C.
.
D. 20a3 .
3
Câu 122. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 123. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Đường phân giác góc phần tư thứ nhất.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.

D. Trục thực.
Câu 124. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 20.

C. 30.

D. 12.

Câu 125. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 126. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 10.
C. 27.

D. 12.

Câu 127. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. V = 4π.
C. 8π.
D. 16π.
Câu 128. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5

=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (1; 0; 2).
C. ~u = (2; 2; −1).
D. ~u = (3; 4; −4).
Câu 129. Bát diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.

C. {4; 3}.

Câu 130. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.

D. {3; 3}.
D. 1 − sin 2x.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2. A

3.

D

4.

5.

B

6. A

7. A
9.

B

11. A
D


13.
C

17. A
19.

C

21. A
23.

8.

D

10.

D

12.

15.

B

14.

D

16.


D

18.

B

20.

B

22. A
B

24.

25.

C

26. A

27.

C

28.

29. A
31.


C

32.

B

34.

35.

B

36.

B

41. A
43.

D

45. A
47.

C

49. A
51.


D
B

B

37. A

B

30.

33.

39.

D

C
B

38.

D

40.

D

42.


D

44.

B

46.

B

48.

C

50.

C

52. A

C

53.

B

54.

55.


B

56. A

D

57. A

58.

59. A

60.

D

62.

D

63. A

64.

D

65. A

66.


C

67. A

68.

C

61.

C

1

C


69.

B

70. A

71.

B

72. A

73.


B

74.

B

75.

D

76.

C

77.

D

78.

C

79.

B

80.

81.


B

82.

83.

B
D

84.

C

C
D

86.

85. A
87.

C

88. A

89.

C


90.

C

92.

C

91.

B
C

93.

94. A

95.

B

96.

97.

B

98.

99.


B

101.

B

100. A
102.

C

103.
105.

C

D

C

104.

B

D

106. A

107.


C

108.

109.

C

110.

111.

D

112.

113.

D

114.

C
D
C
D

115.


C

116.

117.

C

118.

B
B

119.

D

120.

121.

D

122. A

123.

C

124.


125.

C

126. A

128.
130.

B

129. A
C

2

C

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×