Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (710)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (123.04 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
C. z − z = 2a.
D. z + z = 2bi.
A. |z2 | = |z|2 .
B. z · z = a2 − b2 .
Câu 2. Tính mơ-đun của số phức z thỏa mãn z(2 − i) + 13i = √1.


5 34
34
A. |z| = 34.
B. |z| = 34.
.
D. |z| =
.
C. |z| =
3
3
(1 + i)(2 + i) (1 − i)(2 − i)
Câu 3. Cho số phức z thỏa mãn z =
+
. Trong tất cả các kết luận sau, kết luận
1−i


1+i
nào đúng?
1
A. |z| = 4.
B. z = z.
C. z là số thuần ảo.
D. z = .
z
Câu 4. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. −10.
B. 9.
C. 10.
D. −9.
Câu 5. Phần thực của số phức z = 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 là
A. 21008 .
B. −21008 + 1.
C. −22016 .
D. −21008 .
Câu 6. Những số nào sau đây vừa là số thực và vừa là số ảo?
A. Chỉ có số 1.
B. C.Truehỉ có số 0.
C. Khơng có số nào.

D. 0 và 1.

Câu 7. Cho cấp số nhân (un ) với u1 = 2 và công bội q = 12 . Giá trị của u3 bằng
A. 41 .
B. 3.
C. 72 .

D. 12 .
= y−1
=
Câu 8. Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−2
2
2
phẳng đi qua A và chứa d. Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
C. 31 .
D. 5.
A. 1.
B. 113 .

z−1
.
−3

Gọi (P) là mặt

Câu 9. Cho khối lăng trụ đứng ABC · A′ B′C ′ √có đáy ABC là tam giác vuông cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng




A. 42 a3 ..
B. 2a3 .
C. 62 a3 .
D. 22 a3 .
Câu 10. Cho hình chóp đều S .ABCD có chiều cao a, AC = 2a (tham khảo hình bên). Khoảng cách từ B
đến mặt

phẳng (S CD) bằng




2 3
A. 3 a.
B. 2a.
C. 22 a.
D. 33 a.
i
R2
R2h
Câu 11. Nếu 0 f (x)dx = 4 thì 0 12 f (x) − 2 dx bằng
A. 0.
B. −2.
C. 8.
D. 6.
Câu R12. Cho hàm số f (x) = cos x + x. Khẳng định nàoR dưới đây đúng?
2
A. f (x)dx = − sin x + x2 + C.
B. f (x)dx = − sin x + x2 + C.
R
R
2
C. f (x)dx = sin x + x2 + C.
D. f (x)dx = sin x + x2 + C.
Câu 13. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. -1.

B. -3.
C. 2.
D. 1.
Câu 14. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
A. m ≥ 0.
B. 0 ≤ m < .
C. 0 < m < .
D. m < 0 hoặc m > .
4
4
4
Trang 1/5 Mã đề 001


Câu 15. Biết z là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 13 = 0. Khi đó mơ-đun của
2
số phức w =
√ z + 2z bằng bao nhiêu?√

A. |w| = 13.
B. |w| = 37.
C. |w| = 5 13.
D. |w| = 5.
Câu 16. Kí hiệu z1 , z2 , z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0. Tính tổng
T = |z1 | + |z2 | +√|z3 | + |z4 |.



B. T = 4.
C. T = 2 3.
D. T = 4 + 2 3.
A. T = 2 + 2 3.
Câu 17. Biết phương trình z2 + mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo. Khi đó tham số thực
m gần giá trị nào nhất trong các giá trị sau?
A. 5.
B. −4.
C. 2.
D. −1.
Câu 18. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao nhiêu?


A. P = 13.
B. P = 5.
C. P = 5.
D. P = 2 5.
Câu 19. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


B. 25π.
C. 5π.
D. .
A. .
4
2
Câu 20. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i

là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 22.
B. r = 20.
C. r = 5.
D. r = 4.
Câu 21. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
9 9
1
9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
2
1
4
A. .
B. √ .
C. √ .
D. √ .
2
13
5
2
z
Câu 22. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?

A. Tam giác OAB là tam giác vuông.
B. Tam giác OAB là tam giác cân.
C. Tam giác OAB là tam giác nhọn.
D. Tam giác OAB là tam giác đều.

Câu 23. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 4.
B. max |z| = 7.
C. max |z| = 6.
D. max |z| = 3.
Câu 24. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 1.
B. −1.
C. 2.
D. 0.

Câu 25. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|.



A. |z| = 50.
B. |z| = 10.
C. |z| = 33.
D. |z| = 5 2.
z
Câu 26. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?

A. Tam giác OAB là tam giác cân.
B. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác đều.
D. Tam giác OAB là tam giác nhọn.
Câu 27. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ w = x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là
√ z1 , z2 và số phức
27 − i hoặcw = 27√+ i.
B. w = 1 + √27 hoặcw = 1 − √27.
A. w = √
C. w = − 27 − i hoặcw = − 27 + i.
D. w = 1 + 27i hoặcw = 1 − 27i.
Trang 2/5 Mã đề 001


Câu 28. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.




3
2
B. P = 2.
C. P =
.
D. P =

.
A. P = 3.
2
2
Câu 29. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 4 và 3.
B. 5 và 4.
C. 5 và 3.
D. 10 và 4.
Câu 30. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 4 = 0.
B. x − y + 8 = 0.
C. x + y − 8 = 0.
D. x + y − 5 = 0.
Câu 31. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên√mặt phẳng phức. Khi đó√ độ dài của MN là
B. MN = 5.
C. MN = 5.
D. MN = 4.
A. MN = 2 5.
Câu 32. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. −1.
B. 0.
C. 2.
D. 1.
Câu 33. Cho số phức z thỏa mãn |z| + z = 0. Mệnh đề nào đúng?
A. z là số thuần ảo.

B. z là một số thực không dương.
C. Phần thực của z là số âm.
D. |z| = 1.
1
2
=
Câu 34. (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện +
z1 z2









z1
z2
1
. Tính giá trị biểu thức P =





+







z1 + z2
z2
z1


3 2
1
A. 2.
B. 2.
C.
.
D. √ .
2
2
Câu 35. Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2. Tìm giá trị lớn nhất của biểu thức
S = a√+ 2b.



A. 15.
B. 2 5.
C. 5.
D. 10.
Câu 36. (Sở Nam Định) Tìm mơ-đun của số phức z biết z − 4 = (1 + i)|z| − (4 + 3z)i.
1
A. |z| = .
B. |z| = 2.

C. |z| = 1.
D. |z| = 4.
2
Câu 37. Cho z1 , z2 là hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị của biểu thức
P = |z1 + z√2 |.



3
2
.
B. P =
.
C. P = 2.
D. P = 3.
A. P =
2
2
Câu 38. Gọi z1 ; z2 là hai nghiệm của phương trình z2 − z + 2 = 0.Phần thực của số phức
[(i − z1 )(i − z2 )]2017 bằng bao nhiêu?
A. −22016 .
B. −21008 .
C. 21008 .
D. 22016 .
Câu 39. Điểm cực đại của đồ thị hàm số y = x4 − 2x2 + 3 là
A. (1; 2).
B. (0; 3).
C. x = 1.

D. x = 0.


Câu 40. Tìm giá trị nhỏ nhất của hàm số f (x) = 2x3 − 3x2 − 12x + 10 trên đoạn [−3; 3].
A. −35.
B. 1.
C. −10.
D. 17.
x+1
Câu 41. Cho hàm số y =
có đồ thị là (C) và đường thẳng d có phương trình y = 5 − x. Tìm số giao
x−1
điểm của (C) và d.
A. 1.
B. 2.
C. 3.
D. 0.
Trang 3/5 Mã đề 001


Câu 42. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Hai khối chóp có thể tích bằng nhau thì bằng nhau.
B. Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.
C. Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.
D. Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.
Câu 43. Cho tứ diện OABC có các cạnh OA, OB, OC đơi một vng góc nhau và OA = OB = OC = 1.
Tính thể tích V của khối tứ diện OABC.
A. V = 1.

Câu 44. Cho hàm số y =

1

B. V = .
3

1
C. V = .
2

1
D. V = .
6

2x − 3
. Trong các khẳng định sau, khẳng định nào đúng?
−x + 2

A. Hàm số đồng biến trên khoảng (−2; +∞).

B. Hàm số đồng biến trên tập xác định của nó.

C. Hàm số đồng biến trên khoảng (2; +∞).

D. Hàm số đồng biến trên khoảng (−2; 2).

Câu 45. Cho hình chóp S .ABC có đáy là tam giác vng tại B, S A vng góc với đáy và S A = AB (tham
khảo hình bên). Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
A. 45◦ .

B. 30◦ .

C. 90◦ .


D. 60◦ .

Câu 46. Cho hàm số f (x) = cos x + x. Khẳng định nào dưới đây đúng?
R
R
2
A. f (x)dx = sin x + x2 + C.
B. f (x)dx = − sin x + x2 + C.
R
R
2
C. f (x)dx = sin x + x2 + C.
D. f (x)dx = − sin x + x2 + C.

Câu 47. Cho tập hợp A có 15 phần tử. Số tập con gồm hai phần tử của A bằng
A. 30.

B. 105.

C. 210.

D. 225.

Câu 48. Cho cấp số nhân (un ) với u1 = 2 và công bội q = 12 . Giá trị của u3 bằng
A. 3.

B. 12 .

C. 27 .


D. 14 .

Câu 49. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (−∞; 1).

B. (2; +∞).

C. (1; 2).

D. (1; +∞).

Câu 50. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị
ngun của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 3.

B. 5.

C. 4.

D. 2.
Trang 4/5 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001



×