Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (842)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (119.43 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. −10.
B. 9.
C. −9.
D. 10.
2(1 + 2i)
Câu 2. Cho số phức z thỏa mãn (2 + i)z +
= 7 + 8i. Mô-đun của số phức w = z + i + 1 là
1+i
A. 4.
B. 3.
C. 5.
D. 13.
Câu 3. Với mọi số phức z, ta có |z + 1|2 bằng
B. |z|2 + 2|z| + 1.
C. z2 + 2z + 1.
A. z · z + z + z + 1.
4 − 2i (1 − i)(2 + i)
Câu 4. Phần thực của số phức z =
+

2−i


2 + 3i
29
11
11
B. − .
C. − .
A. .
13
13
13
Câu 5. Những số nào sau đây vừa là số thực và vừa là số ảo?
A. Khơng có số nào.
B. C.Truehỉ có số 0.
C. 0 và 1.

D. z + z + 1.

D.

29
.
13

D. Chỉ có số 1.

Câu 6. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mơ-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z

A. 3.
B. 2.
C. 1.
D. 0.
Câu 7. Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + 1 = 0. Tâm của (S ) có
tọa độ là
A. (−1; −2; −3).
B. (−2; −4; −6).
C. (2; 4; 6).
D. (1; 2; 3).
Câu 8. Cho số phức z = 2 + 9i, phần thực của số phức z2 bằng
A. 85.
B. −77.
C. 36.

D. 4.

Câu 9. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (−∞; 1).
C. (1; 2).
D. (1; +∞).
Câu 10. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
. Gọi A và B là hai điểm thuộc
3
đường√
tròn đáy sao cho AB = 12,
đường tròn đáy đến mặt phẳng (S AB) bằng
√ khoảng cách từ tâm của

24
A. 4 2.
B. 8 2.
C. 5 .
D. 245 .
Câu 11. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (7; 6).
B. (6; 7).
C. (−6; 7).
D. (7; −6).
Câu 12. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị
nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 3.
B. 5.
C. 4.
D. 2.
Câu 13. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 5 − 2i và −5 + 2i.
B. 4 − i và 2 + 3i.
C. 4 + i và −4 + i.

D. 4 − i và −4 + i.

Câu 14. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. 2.
B. -1.
C. 1.
D. -3.
Trang 1/5 Mã đề 001



Câu 15. Tìm tất cả các giá trị thực của tham số m để phương trình mz2 + 2mz − 3(m − 1) = 0 khơng có
nghiệm thực là
3
3
3
C. 0 ≤ m < .
D. 0 < m < .
A. m < 0 hoặc m > . B. m ≥ 0.
4
4
4
Câu 16. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
3
1
1
3
A. .
B. .
C. − .
D. − .
2
2
2
2
Câu 17. Căn bậc hai của -4 trong tập số phức là.
A. không tồn tại.
B. 2i hoặc -2i.
C. 4i.


D. 2 hoặc -2.

Câu 18. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mơ-đun bằng bao nhiêu?
A. 3.
B. 4.
C. 2.
D. 1.
Câu 19. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.



A. max T = 2 5.
B. max T = 2 10.
C. max T = 3 5.
D. max T = 3 2.
Câu 20. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 8 = 0.
B. x − y + 4 = 0.
C. x + y − 5 = 0.
D. x + y − 8 = 0.
Câu 21. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 4.
B. r = 5.
C. r = 20.
D. r = 22.


Câu 22. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
3
1
1
A. |z| > 2.
B. < |z| < .
C. ≤ |z| ≤ 2.
D. |z| < .
2
2
2
2






−2 − 3i
z + 1


= 1.
Câu 23. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện




3

2i

A. max |z| = 2.
B. max |z| = 3.
C. max |z| = 2.
D. max |z| = 1.
Câu 24. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


A. .
B. 25π.
C. .
D. 5π.
2
4
z
Câu 25. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác vuông.
B. Tam giác OAB là tam giác đều.
C. Tam giác OAB là tam giác cân.
D. Tam giác OAB là tam giác nhọn.
Câu 26. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 4 và 3.
B. 10 và 4.

C. 5 và 3.
D. 5 và 4.
Câu 27. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 4 = 0.
B. x + y − 8 = 0.
C. x − y + 8 = 0.
D. x + y − 5 = 0.
Câu 28. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
A. Một Parabol.

B. Một đường thẳng.

C. Một Elip.

z+i+1
là số thuần ảo?
z + z + 2i
D. Một đường tròn.

Câu 29. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Hai đường thẳng.
B. Parabol.
C. Một đường thẳng.
D. Đường tròn.
Trang 2/5 Mã đề 001


Câu 30. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.

A. r = 20.
B. r = 4.
C. r = 5.
D. r = 22.
Câu 31. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 1)2 + (y − 4)2 = 125.
B. (x + 1)2 + (y − 2)2 = 125.
C. (x − 5)2 + (y − 4)2 = 125.
D. x = 2.
Câu 32. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 4π.
B. 3π.
C. π.
D. 2π.
Câu 33. (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω =
phức ω là điểm nào?
A. điểm Q.

B. điểm S .

1
là một trong bốn điểm P, Q, R, S . Hỏi điểm biểu diễn số
z
C. điểm P.

D. điểm R.


Câu 34. Giả sử z1 , z2 , . . . , z2016 là 2016 nghiệm phức phân biệt của phương trình z2016 +z2015 +· · ·+z+1 = 0
2017
+ · · · + z2017
+ z2017
Tính giá trị của biểu thức P = z2017
2
1
2015 + z2016
A. P = 2016.
B. P = 0.
C. P = −2016.
D. P = 1.

2 2
Câu 35. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Mệnh đề nào dưới đây
3
đúng?


2 2
2
2
2
A. |z1 + z2 | + |z2 + z3 | + |z3 + z1 | =
.
B. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2.
3
8
C. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = .

D. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.
3
1 + z + z2
Câu 36. Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn
là số thực.
1 − z + z2
Khi đó mệnh đề nào sau đây đúng?
1
3
5
7
5
3
B. < |z| < .
C. < |z| < .
D. 2 < |z| < .
A. < |z| < 2.
2
2
2
2
2
2
Câu 37. Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2. Tìm giá trị lớn nhất của biểu thức
S = a√
+ 2b.



A. 2 5.

B. 15.
C. 5.
D. 10.
2z − i
Câu 38. Cho số phức z thỏa mãn |z| ≤ 1. ĐặtA =
. Mệnh đề nào sau đây đúng?
2 + iz
A. |A| ≥ 1.
B. |A| > 1.
C. |A| < 1.
D. |A| ≤ 1.
Câu 39. Xét hàm số f (x) = −x4 + 2x2 + 3 trên đoạn [0; 2]. Trong các khẳng định sau, khẳng định nào
sai?
A. Hàm số f (x) đạt giá trị nhỏ nhất trên đoạn [0; 2] tại x = 0.
B. Giá trị nhỏ nhất của hàm số f (x) trên đoạn [0; 2] bằng −5.
C. Giá trị lớn nhất của hàm số f (x) trên đoạn [0; 2] bằng 4.
D. Hàm số f (x) đạt giá trị lớn nhất trên đoạn [0; 2] tại x = 1.
Câu 40. Cho hàm số y = f (x) liên tục trên R và có đạo hàm f ′ (x) = x(x + 1). Hàm số y = f (x) đồng
biến trên khoảng nào trong các khoảng dưới đây?
A. (−∞; 0).
B. (−1; +∞).
C. (0; +∞).
D. (−1; 0).
Câu 41. Cho hàm số y = x3 − 3x2 − 9x − 5. Trong các khẳng định sau, khẳng định nào sai?
A. Giá trị cực tiểu của hàm số là 3.
B. Hàm số có hai điểm cực trị.
C. Hàm số có một điểm cực đại và một điểm cực tiểu.
D. Giá trị cực đại của hàm số là 0.
Trang 3/5 Mã đề 001



Câu 42. Hình đa diện dưới đây có bao nhiêu cạnh?

A. 12.

B. 18.

C. 21.

D. 15.

2x − 3
. Trong các khẳng định sau, khẳng định nào đúng?
−x + 2
A. Hàm số đồng biến trên khoảng (−2; +∞).
B. Hàm số đồng biến trên khoảng (−2; 2).

Câu 43. Cho hàm số y =

C. Hàm số đồng biến trên khoảng (2; +∞).

D. Hàm số đồng biến trên tập xác định của nó.

Câu 44. Cho tứ diện OABC có các cạnh OA, OB, OC đơi một vng góc nhau và OA = OB = OC = 1.
Tính thể tích V của khối tứ diện OABC.
1
1
1
B. V = 1.
C. V = .

D. V = .
A. V = .
6
3
2
Câu 45. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (2; +∞).

B. (−∞; 1).

C. (1; 2).

D. (1; +∞).





Câu 46. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =

x3 + (a + 2)x + 9 − a2


đồng biến trên khoảng (0; 1)?
A. 6.

B. 12.

C. 5.


D. 11.

có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm
Câu 47. Cho hàm số y = ax+b
cx+d
số đã cho và trục hoành là
A. (2; 0).

B. (0; −2).

C. (0; 2).

D. (−2; 0).

Câu 48. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường trịn. Tâm của đường trịn đó có tọa độ là
A. (2; 0).

B. (0; 2).

C. (−2; 0).

D. (0; −2).

Câu 49. Cho hàm số f (x) liên tục trên R. Gọi
R 2 F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4) + G(4) = 4 và F(0) + G(0) = 1. Khi đó 0 f (2x)dx bằng
A. 32 .


B. 34 .

C. 3.

D. 6.

Câu 50. Cho số phức z = 2 + 9i, phần thực của số phức z2 bằng
A. 36.

B. 4.

C. 85.

D. −77.
Trang 4/5 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001



×