Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (697)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (120.63 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A. z + z = 2bi.
B. z − z = 2a.
C. z · z = a2 − b2 .
D. |z2 | = |z|2 .
Câu 2.√Cho số phức z1 = 3 + 2i,√z2 = 2 − i. Giá trị của √
biểu thức |z1 + z1 z2 | là

B. 10 3.
C. 130.
D. 2 30.
A. 3 10.
4 + 2i + i2017
Câu 3. Số phức z =
có tổng phần thực và phần ảo là
2−i
A. -1.
B. 3.
C. 2.
D. 1.
4 − 2i (1 − i)(2 + i)
+


Câu 4. Phần thực của số phức z =
2−i
2 + 3i
29
29
11
11
B. − .
C. .
D. − .
A. .
13
13
13
13
2
Câu 5. Cho số phức z thỏa (1 − 2i)z + (1 + 3i) = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. M(2; −3).
B. N(2; 3).
C. P(−2; 3).
D. Q(−2; −3).
Câu 6. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 2.
B. 3.
C. 1.


D. 4.




Câu 7. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =

x3 + (a + 2)x + 9 − a2


đồng biến trên khoảng (0; 1)?
A. 5.
B. 11.
C. 6.
D. 12.

Câu 8. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị?
A. 15.
B. 3.
C. 7.
D. 17.
Câu 9. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị nguyên
của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 2.
B. 5.
C. 4.
D. 3.
Câu 10. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:





A. →
n3 = (1; 1; 1).
B. →
n4 = (1; 1; −1).
C. →
n2 = (1; −1; 1).
D. →
n1 = (−1; 1; 1).
có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm
Câu 11. Cho hàm số y = ax+b
cx+d
số đã cho và trục hoành là
A. (2; 0).
B. (0; −2).
C. (0; 2).
D. (−2; 0).
Câu 12. Cho cấp số nhân (un ) với u1 = 2 và công bội q = 21 . Giá trị của u3 bằng
A. 27 .
B. 3.
C. 14 .
D. 12 .
Câu 13. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
1
3
3
1
A. − .
B. .

C. .
D. − .
2
2
2
2
2
Câu 14. Cho phương trình bậc hai az + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
−b
.
A. Phương trình đã cho có tổng hai nghiệm bằng
a
c
B. Phương trình đã cho có tích hai nghiệm bằng .
a
Trang 1/5 Mã đề 001


C. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
D. Phương trình đã cho ln có nghiệm.
Câu 15. Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mơ-đun bằng bao nhiêu?
A. 2.
B. 4.
C. 3.
D. 1.
Câu 16. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √




B. |w| = 5.
C. |w| = 3.
D. |w| = 2 2.
A. |w| = 2.
Câu 17. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
7
3
7
3
B. .
C. .
D. − .
A. − .
4
4
4
4
Câu 18. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. −8.
B. 12.
C. 8.
D. −12.







−2 − 3i


Câu 19. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện


z + 1


= 1.
3 − 2i

A. max |z| = 3.
B. max |z| = 1.
C. max |z| = 2.
D. max |z| = 2.
Câu 20. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó độ dài của MN là


A. MN = 5.
B. MN = 4.
C. MN = 5.
D. MN = 2 5.






z − z







×