Tải bản đầy đủ (.pdf) (5 trang)

Đề luyện thi thpt môn toán (564)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.9 KB, 5 trang )

Free LATEX

ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001

Câu 1. Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có
tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo
dây cung dài nhất?
A. x = 5 + 2ty = 5 + tz = 2 − 4t.
B. x = 5 + ty = 5 + 2tz = 2.
C. x = 5 + 2ty = 5 + tz = 2.
D. x = 3 + 2ty = 4 + tz = 6.
Câu 2. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Giao điểm của (P)
và trục tung có tọa độ là
A. (0; 0; 5).
B. (0; 5; 0).
C. (0; 1; 0).
D. (0; −5; 0).

Câu 3. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hồnh. Tìm
thể tích V của khối tròn xoay tạo thành?
10π
π
D. V =
.
A. V = π.
B. V = 1.
C. V = .


3
3
R1 √3
Câu 4. Tính I =
7x + 1dx
0

21
60
A. I = .
B. I = .
8
28
Câu 5. Hàm
√ số nào sau√đây đồng biến trên R?
A. y = x2 + x + 1 − x2 − x + 1.
C. y = tan x.

C. I =

45
.
28

D. I =

20
.
7


B. y = x2 .
D. y = x4 + 3x2 + 2.

p
Câu 6. Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) 1 − y. Kết luận nào
sau đây là sai?
A. Nếux > 2 thìy < −15.
B. Nếu 0 < x < π thì y > 1 − 4π2 .
C. Nếux = 1 thì y = −3.
D. Nếu 0 < x < 1 thì y < −3.
Câu 7. Số nghiệm của phương trình 9 x + 5.3 x − 6 = 0 là
A. 0.
B. 2.
C. 1.

D. 4.

Câu 8. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
.
C. −6.
D. 1.
A. 0.
B.
6
Câu 9. Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh bằng a. Tính thể tích khối chóp D.ABC ′ D′ .
a3
a3
a3
a3

A. .
B. .
C. .
D. .
6
3
9
4
R
Câu 10. Tính nguyên hàm cos 3xdx.
1
1
A. −3 sin 3x + C.
B. sin 3x + C.
C. − sin 3x + C.
D. 3 sin 3x + C.
3
3
a3
Câu 11. Cho hình chóp đều S .ABCD có cạnh đáy bằng a và thể tích bằng . Tìm góc giữa mặt bên và
6
mặt đáy của hình chóp đã cho.
A. 600 .
B. 1350 .
C. 450 .
D. 300 .


Câu 12. Cho hàm số y = x− 2017 . Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm
số?

A. Khơng có tiệm cận.
B. Có một tiệm cận ngang và khơng có tiệm cận đứng.
Trang 1/5 Mã đề 001


C. Khơng có tiệm cận ngang và có một tiệm cận đứng.
D. Có một tiệm cận ngang và một tiệm cận đứng. .
Câu 13. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = 1 + 2ty = 2 + (m − 1)tz = 3 − t.
Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
A. m , 1.
B. m = 1.
C. m , 0.
D. m , −1.
Câu 14. Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng
biến thiên như hình bên. Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân
biệt.
S
S
7
7
7
A. ( ; 2] [22; +∞) . B. [ ; 2] [22; +∞).
C. ( ; +∞)
D. [22; +∞).
4
4
4
.

Câu 15. Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a 3. Tính khoảng cách giữa hai

đường √
thẳng BB′ và AC ′ .



a 2
a 3
a 3
.
B.
.
C.
.
D. a 3.
A.
4
2
2
Câu 16. Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB. Tính thể
tích của khối tứ diện B.MCD.
V
V
V
V
A. .
B. .
C. .
D. .
5
4

3
2
Câu 17. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
4
3
A. πR3 .
B. 4πR3 .
C. πR3 .
D. πR3 .
3
4
Câu 18. Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến trên R?
A. m > 2e .
B. m > e2 .
C. m ≥ e−2 .
D. m > 2.
Câu 19. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (0; 2; 0).
B. (0; −2; 0).
C. (0; 6; 0).
D. (−2; 0; 0).
Câu 20. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
A. y = tan x.
B. y = x3 − 2x2 + 3x + 2.
3x + 1
.
C. y = sin x .
D. y =
x−1

Câu 21. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Giao điểm của (P)
và trục tung có tọa độ là
A. (0; 1; 0).
B. (0; 5; 0).
C. (0; 0; 5).
D. (0; −5; 0).
Câu 22. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y =
hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
3
A. 1 < m , 4.
B. −4 < m < 1.
C. m < .
2

3 + 2x
tại
x+1

D. ∀m ∈ R.

Câu 23. Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3 + 6x2 + mx − 2 đi qua điểm (11;1)?
A. m = −2.
B. m = 13.
C. m = 3.
D. m = −15.
Câu 24. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s).
Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động.
A. S = 12 (m).
B. S = 20 (m).

C. S = 28 (m).
D. S = 24 (m).
Câu 25. Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (−2; −3; −1).
B. M ′ (−2; 3; 1).
C. M ′ (2; −3; −1).
D. M ′ (2; 3; 1).
Trang 2/5 Mã đề 001


Câu 26. Một thùng đựng nước có dạng hình trụ có chiều cao h và bán kính đáy√bằng R. Khi đặt thùng
R 3
nước nằm ngang như hình 1 thì khoảng cách từ trục hình trụ tới mặt nước bằng
(mặt nước thấp hơn
2
trục của hình trụ). Khi đặt thùng nước thẳng đứng như hình 2 thì chiều cao của mực nước trong thùng là
h1
h1 . Tính tỉ số


√h

π− 3
3
2π − 3
2π − 3 3
.
B.
.

C.
.
D.
.
A.
12
6
4
12
2x − 3
Câu 27. Với giá trị nào của tham số m thì hàm số y =
đạt giá trị lớn nhất trên đoạn [1; 3] bằng
x + m2
1
:
4

A. m = ±3.
B. m = ±1.
C. m = ±2.
D. m = ± 3.
Câu 28. Đồ thị hàm số nào sau đây có 3 điểm cực trị:
A. y = x4 + 2x2 − 1.
B. y = −x4 − 2x2 − 1. C. y = x4 − 2x2 − 1.

D. y = 2x4 + 4x2 + 1.

Câu 29. Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2). Tìm tọa độ D để ABCD là hình bình
hành.
A. (−1; 1; 1).

B. (1; 1; 3).
C. (1; −2; −3).
D. (1; −1; 1).
Câu 30. Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm
cực đại có hồnh độ nhỏ hơn 1.
A. S = (−∞; −4) ∪ (−1; +∞) .
B. S = (−1; +∞) .
C. S = (−4; −1).
D. S = [−1; +∞) .
Câu 31. Họ nguyên hàm của hàm số y = (x − 1)e x là:
A. xe x−1 + C.
B. (x − 1)e x + C.
C. xe x + C.
D. (x − 2)e x + C.

x− x+2
Câu 32. Đồ thị của hàm số y =
có tất cả bao nhiêu tiệm cận?
x2 − 4
A. 3.
B. 2.
C. 1.
D. 0.
1 3 2
x −2x +3x+1
Câu 33. Cho hàm số f (x) = e 3
. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (−∞; 1) và (3; +∞).
B. Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 1) và (3; +∞).

D. Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3; +∞).
Câu 34. Hàm số y = x4 − 4x2 + 1 đồng biến trên khoảng nào trong các khoảng sau đây.
A. (−1; 1).
B. (−3; 0).
C. (3; 5).
D. (1; 5).
0
d
Câu 35. Cho hình chóp S .ABC có đáy ABC
√ là tam giác vuông tại A; BC = 2a; ABC = 60 . Gọi Mlà
trung điểm cạnh BC, S A = S C √
= S M = a 5. Tính khoảng cách từ S đến mặt phẳng
√ (ABC).
A. a.
B. a 3.
C. 2a.
D. a 2.


Câu 36. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình đúng với mọi x ∈ (4; +∞).
B. Bất phương trình đúng với mọi x ∈ [ 1; 3].
C. Bất phương trình vơ nghiệm.
D. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
Câu 37. Hàm số nào trong các hàm số sau đồng biến trên R.
4x + 1
A. y =
.
B. y = x3 + 3x2 + 6x − 1.
x+2

C. y = x4 + 3x2 .
D. y = −x3 − x2 − 5x.
Trang 3/5 Mã đề 001


−u = (2; 1; 3),→
−v = (−1; 4; 3). Tìm tọa độ của véc
Câu 38. Trong không gian với hệ trục tọa độ Oxyz cho →




tơ 2 u + 3 v .
−u + 3→
−v = (2; 14; 14).
−u + 3→
−v = (1; 13; 16).
A. 2→
B. 2→
−u + 3→
−v = (3; 14; 16).
−u + 3→
−v = (1; 14; 15).
C. 2→
D. 2→
Câu 39. Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình √
nón đỉnh S và đáy là hình√trịn nội tiếp tứ giác ABCD
√ bằng


2
2
2
πa 17
πa 15
πa2 17
πa 17
.
B.
.
C.
.
D.
.
A.
4
8
4
6
Câu 40. Cho mặt cầu (S ) có bán kính bằng R = 5, một hình trụ (T )có hai đường trịn đáy nằm trên mặt
cầu (S ). Thể
√ nhất bằng bao nhiêu. √

√ tích của khối trụ (T ) lớn
400π 3
500π 3
125π 3
250π 3
.
B.

.
C.
.
D.
.
A.
9
9
9
3
Câu 41. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 3.
B. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
2
2
2
C. (x − 1) + (y + 2) + (z − 4) = 1.
D. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
Câu 42. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi

− (2; 3; −5).
qua điểm
A(1; −2; 4) và có một

 véc tơ chỉ phương là u 






x = 1 − 2t
x = 1 + 2t
x = −1 + 2t
x = 1 + 2t












y
=
−2
+
3t
y
=
−2

3t
y
=
2

+
3t
y
= −2 + 3t .
.
C.
.
D.
A. 
.
B.











 z = 4 + 5t
 z = 4 − 5t
 z = −4 − 5t
 z = 4 − 5t
Câu 43. Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′ =√2a. Gọi α là số đo góc giữa hai đường thẳng AC √
và DB′ . Tính giá trị cos α.√
5

1
3
3
.
B. .
C.
.
D.
.
A.
5
2
2
4
Câu 44. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
B. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
C. (x − 1)2 + (y − 2)2 + (z − 4)2 = 3.
D. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
Câu 45. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh
√ a. Hai mặt phẳng (S AB), (S AC) cùng
2
3. Tính thể tích khối
vng góc
với
mặt
phẳng
(ABC),
diện

tích
tam
giác
S
BC

a



√ chóp S .ABC.
3
3
3
3
a 15
a 5
a 15
a 15
A.
.
B.
.
C.
.
D.
.
8
3
4

16
Câu 46. Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N). Diện tích
tồn phầnS tp của hình nón (N) bằng
A. S tp = 2πRl + 2πR2 . B. S tp = πRl + 2πR2 .
C. S tp = πRl + πR2 .
D. S tp = πRh + πR2 .
Câu 47. Hàm số y = x4 − 4x2 + 1 đồng biến trên khoảng nào trong các khoảng sau đây.
A. (−1; 1).
B. (−3; 0).
C. (3; 5).
D. (1; 5).
Câu 48. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
4 10 16
7 10 31
5 11 17
2 7 21
A. M( ; ; ).
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
3 3 3
3 3 6
3 3 3
3 3 3
Câu 49. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 1 thì a x > ay ⇔ x > y.
B. Nếu a > 0 thì a x > ay ⇔ x < y.
C. Nếu a < 1 thì a x > ay ⇔ x < y.
D. Nếu a > 0 thì a x = ay ⇔ x = y.

Câu 50. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm
−n (2; 1; −4).
A(1; 2; 3) và có một véc tơ pháp tuyến là →
A. 2x + y − 4z + 1 = 0.
B. −2x − y + 4z − 8 = 0.
C. 2x + y − 4z + 7 = 0.
D. 2x + y − 4z + 5 = 0.
Trang 4/5 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001



×