Tải bản đầy đủ (.pdf) (5 trang)

Đề luyện thi thpt môn toán (851)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.13 KB, 5 trang )

Free LATEX

ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001

Câu 1. Tính I =

R1 √3

7x + 1dx

0

60
21
45
20
.
B. I = .
C. I = .
D. I = .
28
8
28
7
′ ′ ′ ′
Câu 2. Cho hình hộp ABCD.A B C D có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt


bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 30a3 .
B. 100a3 .
C. 20a3 .
D. 60a3 .
A. I =

Câu 3.√ Bất đẳng thức
√ nào πsau đây là đúng?
e
A. ( 3 − 1) < ( 3 − 1) .
C. 3−e > 2−e .
Câu 4. Kết quả nào đúng?
R
A. sin2 x cos x = cos2 x. sin x + C.
R
C. sin2 x cos x = −cos2 x. sin x + C.

π
B. 3√
< 2π .

π
e
D. ( 3 + 1) > ( 3 + 1) .

sin3 x
+ C.
3
R

sin3 x
+ C.
D. sin2 x cos x =
3
Câu 5. Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (2; −3; −1).
B. M ′ (−2; −3; −1).
C. M ′ (2; 3; 1).
D. M ′ (−2; 3; 1).
B.

R

sin2 x cos x = −

Câu 6. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
B. m ≥ 0.
C. m ∈ (−1; 2).
D. m ∈ (0; 2).
A. −1 < m < .
2
Câu R7. Công thức nào sai?
R
A. R a x = a x . ln a + C.
B. R cos x = sin x + C.
C. e x = e x + C.
D. sin x = − cos x + C.

Câu 8. Số nghiệm của phương trình 9 x + 5.3 x − 6 = 0 là
A. 0.
B. 1.
C. 2.

x
Câu 9. Tìm nghiệm của phương trình 2 x = ( 3) .
A. x = 2.
B. x = 0.
C. x = −1.

D. 4.
D. x = 1.

Câu 10. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − 1 = 0. Viết phương trình
mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P).
A. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3.
B. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3.
1
1
C. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = .
D. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = .
3
3

′ ′ ′ ′
Câu 11. Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = a 3. Tính khoảng cách giữa hai
đường thẳng BB′ và AC ′ .





a 2
a 3
a 3
A. a 3.
B.
.
C.
.
D.
.
2
2
4
Câu 12. Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3). Tìm tọa độ điểm A là hình chiếu
của M trên mặt phẳng (Oxy).
A. A(1; 2; 0).
B. A(0; 0; 3).
C. A(0; 2; 3).
D. A(1; 0; 3).
Trang 1/5 Mã đề 001


Câu 13. Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét. Khi đó hình thang đã
cho có√diện tích lớn nhất bằng?


3 3 2
3 3 2

2
A.
(m ).
B. 3 3(m ).
C.
(m ).
D. 1 (m2 ).
4
2
Câu 14. Tập nghiệm của bất phương trình log 1 (x − 1) ≥ 0 là:
A. (−∞; 2].

B. (1; 2].

2

C. (1; 2).

D. [2; +∞).


Câu
15.
Cho
hình
chóp
S
.ABC

S

A⊥(ABC).
Tam
giác
ABC
vng
cân
tại
B

S
A
=
a
6, S B =

a 7. Tính góc giữa SC và mặt phẳng (ABC).
A. 450 .
B. 300 .
C. 1200 .
D. 600 .
Câu 16. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4). Tìm tọa độ trung
điểm I của đoạn thẳng AB.
A. I(0; −1; 2).
B. I(0; 1; 2).
C. I(0; 1; −2).
D. I(1; 1; 2).
Câu 17. Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A. Đường tròn.
B. Đường elip.
C. Đường parabol.

D. Đường hypebol.
Câu 18. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là
một điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM,
AN để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
D. C(6; 21; 21).
A. C(20; 15; 7).
B. C(6; −17; 21).
C. C(8; ; 19).
2
Câu 19. Cho hình chóp đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng b. Thể tích của khối chóp
là:
√ 2
√ 2
3ab
3a b
.
B. VS .ABC =
.
A. VS .ABC =
12
12
q


a2 b2 − 3a2
a2 3b2 − a2
C. VS .ABC =
.
D. VS .ABC =

.
12
12
Câu 20. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. 1.
B. −6.
C. .
D. 0.
6

Câu 21. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hồnh. Tìm
thể tích V của khối trịn xoay tạo thành.
π
10π
A. V = .
B. V =
.
C. V = π.
D. V = 1.
3
3
Câu 22. Phương trình tiếp tuyến với đồ thị hàm số y = log5 x tại điểm có hồnh độ x = 5 là:
x
x
1
A. y =
+ 1.
B. y =


.
5 ln 5
5 ln 5 ln 5
1
x
1
x
C. y =
+1−
.
D. y =
−1+
.
5 ln 5
ln 5
5 ln 5
ln 5
Câu 23. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
3x + 1
A. y =
.
B. y = x3 − 2x2 + 3x + 2.
x−1
C. y = tan x.
D. y = sin x .
Câu 24. Số nghiệm của phương trình 9 x + 5.3 x − 6 = 0 là
A. 4.
B. 0.
C. 1.


D. 2.

Câu 25. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y =
hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
3
A. ∀m ∈ R.
B. −4 < m < 1.
C. m < .
2

3 + 2x
tại
x+1

D. 1 < m , 4.
Trang 2/5 Mã đề 001


x3
Câu 26. Tìm tất cả các giá trị của tham số m để hàm số y = (m + 2) − (m + 2)x2 + (m − 8)x + m5 nghịch
3
biến trên R.
A. m < −3.
B. m ≤ −2.
C. m ≥ −8.
D. m ≤ 0.
1
1
1
+

+ ... +
ta được:
Câu 27. Rút gọn biểu thức M =
loga x loga2 x
logak x
4k(k + 1)
k(k + 1)
k(k + 1)
k(k + 1)
A. M =
.
B. M =
.
C. M =
.
D. M =
.
loga x
loga x
2loga x
3loga x
Câu 28. Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 . Khi t = 0 thì vận tốc của vật là 30 (m/s).
Quãng đường vật đó đi được sau 2 giây gần với giá trị nào nhất sau đây?
A. 50m.
B. 47m.
C. 48m.
D. 49m.
Câu 29. Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x2 − 4x + 5, tiếp tuyến tại
A(1; 2) và tiếp tuyến tại B(4; 5) của đồ thị (C).
9

3
5
7
B. .
C. .
D. .
A. .
4
4
4
4
Câu 30. Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2). Tìm tọa độ D để ABCD là hình bình
hành.
A. (1; 1; 3).
B. (−1; 1; 1).
C. (1; −2; −3).
D. (1; −1; 1).
Câu 31. Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2). Đường phân
giác trong góc A của tam giác ABC cắt mặt phẳng (P) : x + y + z − 6 = 0 tại điểm nào trong các điểm
sau đây:
A. (−2; 2; 6).
B. (4; −6; 8).
C. (1; −2; 7).
D. (−2; 3; 5).
Câu 32. Nguyên hàm F(x) của hàm số f (x) = 2x2 + x3 − 4 thỏa mãn điều kiện F(0) = 0 là
2 3 x4
2 3 x4
3
4
− 4x + 4. C. x +

− 4x.
D. x3 − x4 + 2x.
A. 2x − 4x .
B. x +
3
4
3
4
Câu 33. Cho một hình trụ (T ) có chiều cao và bán kính đều bằng 3a Một hình vng ABCD có hai cạnh
AB, CD lần lượt là hai dây cung của hai đường trịn đáy, cạnh AD, BC khơng phải là đường sinh của
hình trụ (T ). Tính cạnh của hình vng này.


3a 10
.
A. 3a 5.
B. 6a.
C. 3a.
D.
2
Câu 34. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = −x4 + 2x2 + 8. B. y = −2x4 + 4x2 .
C. y = x3 − 3x2
.

Câu 35. Tính đạo hàm của hàm số y = log4 x2 − 1
1
x
x
A. y′ = √

. B. y′ =
. C. y′ = 2
.
2
2(x − 1) ln 4
(x − 1)log4 e
x2 − 1 ln 4

D. y = −x4 + 2x2 .

D. y′ =

(x2

x
.
− 1) ln 4

Câu 36. Hình phẳng giới hạn bởi đồ thị hàm y = x2 +1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
1
1
1
1
A. .
B.
.
C. .
D. .
4

12
6
3
−u = (2; 1; 3),→
−v = (−1; 4; 3). Tìm tọa độ của véc
Câu 37. Trong không gian với hệ trục tọa độ Oxyz cho →
−u + 3→
−v .
tơ 2→


−v = (1; 13; 16).
−u + 3→
−v = (1; 14; 15).
A. 2 u + 3→
B. 2→
−u + 3→
−v = (2; 14; 14).
−u + 3→
−v = (3; 14; 16).
C. 2→
D. 2→
0
d
Câu 38. Cho hình chóp S .ABC có đáy ABC
√ là tam giác vng tại A; BC = 2a; ABC = 60 . Gọi Mlà
trung điểm
= S M = a 5. Tính khoảng cách từ S đến mặt phẳng (ABC).
√ cạnh BC, S A = S C √
A. a 2.

B. a 3.
C. a.
D. 2a.

Trang 3/5 Mã đề 001


Câu 39. Hàm số nào trong các hàm số sau đồng biến trên R.
A. y = x3 + 3x2 + 6x − 1.
B. y = −x3 − x2 − 5x.
4x + 1
.
D. y = x4 + 3x2 .
C. y =
x+2
Câu 40. Hàm số y = x4 − 4x2 + 1 đồng biến trên khoảng nào trong các khoảng sau đây.
A. (−3; 0).
B. (−1; 1).
C. (3; 5).
D. (1; 5).
Câu 41. Chọn mệnh đề đúng trong các mệnh đề sau:
R3
R2
R3
A. |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx.
B.

1

1


R3

R2

1

C.

R3

|x2 − 2x|dx = (x2 − 2x)dx −
1

|x2 − 2x|dx = −

1

D.

R3
1

2

R3

(x2 − 2x)dx.

2


R2

(x2 − 2x)dx +

1

(x2 − 2x)dx.

2

R2

R3

1

2

|x2 − 2x|dx = (x2 − 2x)dx +

R3

(x2 − 2x)dx.

Câu 42. Trong không gian với hệ trục tọa độ Oxyz, gọi (P)
√ là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
3 2
. Giả sử phương trình mặt phẳng (P) có dạng
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng

2
ax + by + cz + 2 = 0. Tính giá trị abc.
A. 4.
B. 2.
C. −4.
D. −2.
Câu 43. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = (1 − sin 3x)5 x+cos3x ln 5.
C. y′ = 5 x+cos3x ln 5.

B. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5.
D. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
cos x
π
Câu 44. Biết hàm F(x) là một nguyên hàm của hàm f (x) =
và F(− ) = π. Khi đó giá trị
sin x + 2 cos x
2
F(0) bằng:
1

1



A. ln 2 + .
B. ln 2 + .
C. ln 2 + .
D. .
5

5
4
2
5
5
Câu 45. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 12π.
B. 8π.
C. 10π.
D. 6π.
r
3x + 1
Câu 46. Tìm tập xác định D của hàm số y = log2
x−1
A. D = (−1; 4).
B. D = (1; +∞).
C. D = (−∞; −1] ∪ (1; +∞).
D. D = (−∞; 0).
Câu 47. Tính thể tích của khối trịn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2 ,
trục Ox và hai đường thẳng x = −1; x = 2 quay quanh trục Ox.
33π
31π
32π
A.
.
B. 6π.
C.
.
D.

.
5
5
5
Câu 48. Cho m = log2 3; n = log5 2. Tính log2 2250 theo m, n.
2mn + n + 2
3mn + n + 4
A. log2 2250 =
.
B. log2 2250 =
.
n
n
2mn + n + 3
2mn + 2n + 3
C. log2 2250 =
.
D. log2 2250 =
.
n
m
Câu 49. Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N). Diện tích
tồn phầnS tp của hình nón (N) bằng
A. S tp = πRl + 2πR2 .
B. S tp = πRl + πR2 .
C. S tp = 2πRl + 2πR2 . D. S tp = πRh + πR2 .
Trang 4/5 Mã đề 001


Câu 50. Hàm số nào trong các hàm số sau đồng biến trên R.

4x + 1
A. y = x3 + 3x2 + 6x − 1.
B. y =
.
x+2
C. y = −x3 − x2 − 5x.
D. y = x4 + 3x2 .

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001



×