Free LATEX
ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
√
x
Câu 1. Đồ thị hàm số y = ( 3 − 1) có dạng nào trong các hình H1, H2, H3, H4 sau đây?
A. (H2) .
B. (H1).
C. (H3).
D. (H4).
√
′ ′ ′
′
Câu 2.√Cho lăng trụ đều ABC.A
√ B3 C có đáy bằng a, AA 3 = 4 3a. Thể tích khối3lăng trụ đã cho là:
3
A. 8 3a .
B. 3a .
C. 3a .
D. a .
√
Câu 3. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hồnh. Tìm
thể tích V của khối trịn xoay tạo thành?
π
10π
.
B. V = .
C. V = 1.
D. V = π.
A. V =
3
3
Câu 4. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Giao điểm của (P)
và trục tung có tọa độ là
A. (0; 0; 5).
B. (0; 5; 0).
C. (0; −5; 0).
D. (0; 1; 0).
Câu 5. Cho lăng trụ đều ABC.A′ B′C ′ có tất cả các cạnh đều bằng a. Tính khoảng cách giữa hai đường
thẳng AB′ và BC ′ .
√
√
a
5a
3a
2a
.
D.
.
B. √ .
C.
A. √ .
3
2
5
5
Câu 6. Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ có cực tiểu mà khơng có
cực đại
A. m ≤ 1.
B. m ≥ 1.
C. m < 1.
D. m > 1.
Câu 7. Phương trình tiếp tuyến với đồ thị hàm số y = log5 x tại điểm có hồnh độ x = 5 là:
x
1
x
1
A. y =
−1+
.
B. y =
+1−
.
5 ln 5
ln 5
5 ln 5
ln 5
x
x
1
C. y =
+ 1.
D. y =
−
.
5 ln 5
5 ln 5 ln 5
Câu 8. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y =
3 + 2x
tại
x+1
hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
3
A. ∀m ∈ R .
B. m < .
C. −4 < m < 1.
D. 1 < m , 4.
2
Câu 9. Cho hình trụ có hai đáy là hai đường trịn (O; r) và (O′ ; r). Một hình nón có đỉnh O và có đáy là
hình trịn (O′ ; r). Mặt xung quanh của hình nón chia khối trụ thành hai phần. Gọi V1 là thể tích của khối
V1
nón, V2 là thể tích của phần cịn lại. Tính tỉ số .
V2
V1 1
V1 1
V1
V1 1
A.
= .
B.
= .
C.
= 1.
D.
= .
V2 2
V2 6
V2
V2 3
√ sin 2x
Câu 10. Giá trị lớn nhất của hàm số y = ( π)
trên R bằng?
√
A. 0.
B. 1.
C. π.
D. π.
R5
dx
= ln T. Giá trị của T là:
1 2x − 1
√
A. T = 3.
B. T = 3.
C. T = 9.
2x + 2017
Câu 12. Cho hàm số y =
(1). Mệnh đề nào dưới đây là đúng?
x
+ 1
Câu 11. Biết
D. T = 81.
Trang 1/5 Mã đề 001
A. Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y = 2 và không có tiệm cận đứng.
B. Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và khơng có tiệm cận
đứng.
C. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x = −1, x = 1..
D. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = −1..
log
Câu 13. Cho a > 0 và a , 1. Giá
√ trị của a
A. 9.
B. 3.
√ 3
a
bằng?
C. 6.
D. 3.
Câu 14. Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2). Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450 .
A. C(5; 9; 5).
B. C(1; 5; 3).
C. C(−3; 1; 1).
D. C(3; 7; 4).
Câu 15. Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục
tung.
1
1
C. m < 0.
D. 0 < m < .
A. Không tồn tại m.
B. m < .
3
3
Câu 16. Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB. Tính thể
tích của khối tứ diện B.MCD.
V
V
V
V
A. .
B. .
C. .
D. .
2
3
5
4
x
Câu 17. Giá trị nhỏ nhất của hàm số y = 2
trên tập xác định của nó là
x +1
1
1
A. min y = 0.
B. min y = .
C. min y = − .
D. min y = −1.
R
R
R
R
2
2
Câu 18. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s).
Tính qng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động.
A. S = 24 (m).
B. S = 12 (m).
C. S = 20 (m).
D. S = 28 (m).
Câu 19. Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3 + 6x2 + mx − 2 đi qua điểm (11;1)?
A. m = 13.
B. m = −2.
C. m = 3.
D. m = −15.
Câu 20. Cho lăng trụ đều ABC.A′ B′C ′ có tất cả các cạnh đều bằng a. Tính khoảng cách giữa hai đường
thẳng√AB′ và BC ′ .
√
5a
a
2a
3a
A.
.
B. √ .
C. √ .
D.
.
3
2
5
5
Câu 21. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
4
3
A. 4πR3 .
B. πR3 .
C. πR3 .
D. πR3 .
3
4
Câu 22. Hàm số nào sau đây khơng có cực trị?
A. y = x4 + 3x2 + 2.
B. y = x2 .
3
2
C. y = x − 6x + 12x − 7.
D. y = cos x.
Câu 23. Hàm số nào sau đây đồng biến trên R?
A. y = tan x.
C. y = x4 + 3x2 + 2.
B. y = x√2 .
√
D. y = x2 + x + 1 − x2 − x + 1.
Câu 24. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
A. loga x2 = 2loga x.
B. aloga x = x.
1
C. loga (x − 2)2 = 2loga (x − 2).
D. loga2 x = loga x .
2
′ ′ ′ ′
Câu 25. Cho hình hộp ABCD.A B C D có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 30a3 .
B. 100a3 .
C. 60a3 .
D. 20a3 .
Trang 2/5 Mã đề 001
Câu 26. Đồ thị như hình bên là đồ thị của hàm số nào?
2x + 2
2x + 1
2x − 1
−2x + 3
A. y =
.
B. y =
.
C. y =
.
D. y =
.
x+1
x+1
x−1
1−x
Câu 27. Cho hình chóp đều S .ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC
o
Biết góc
√ sin của góc giữa MN và√mặt phẳng (S BD)
√ giữa MN và mặt phẳng (ABCD) bằng 60 . Tính
2
10
5
3
.
B. .
C.
.
D.
.
A.
5
5
5
4
x3
Câu 28. Tìm tất cả các giá trị của tham số m để hàm số y = (m + 2) − (m + 2)x2 + (m − 8)x + m5 nghịch
3
biến trên R.
A. m < −3.
B. m ≥ −8.
C. m ≤ −2.
D. m ≤ 0.
√3
a2 b
) bằng
Câu 29. Biết loga b = 2, loga c = 3 với a, b, c > 0; a , 1. Khi đó giá trị của loga (
c
2
1
A. .
B. − .
C. 5.
D. 6.
3
3
√
x− x+2
Câu 30. Đồ thị của hàm số y =
có tất cả bao nhiêu tiệm cận?
x2 − 4
A. 1.
B. 2.
C. 3.
D. 0.
Câu 31. Một thùng đựng nước có dạng hình trụ có chiều cao h và bán kính đáy√bằng R. Khi đặt thùng
R 3
(mặt nước thấp hơn
nước nằm ngang như hình 1 thì khoảng cách từ trục hình trụ tới mặt nước bằng
2
trục của hình trụ). Khi đặt thùng nước thẳng đứng như hình 2 thì chiều cao của mực nước trong thùng là
h1
h1 . Tính tỉ số
√h
√
√
√
2π − 3 3
3
2π − 3
π− 3
A.
.
B.
.
C.
.
D.
.
12
4
12
6
Câu 32. Một công ty chuyên sản xuất gỗ muốn thiết kế các thùng đựng hàng có dạng hình lăng trụ tứ
giác đều khơng nắp, có thể tích là 62,5dm3 . Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng
sao cho tổng S của diện tích xung quanh và diện tích mặt √
đáy là nhỏ nhất, S bằng
D. 75dm2 .
A. 125dm2 .
B. 106, 25dm2 .
C. 50 5dm2 .
Câu 33. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1;
Độ dài đường cao AH của tứ diện ABCD là:
A. 9 .
B. 5 .
C. 7 .
D. 6.
Câu 34. Cho hình√chóp S .ABCD có đáy ABCD là hình vng. Cạnh S A vng góc với mặt phẳng
(ABCD); S A = 2a 3. Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 . Gọi M, N lần lượt là trung
điểm hai
MN và S C.
√ cạnh AB, AD. Tính khoảng
√ cách giữa hai đường thẳng
√
√
a 15
3a 6
3a 30
3a 6
A.
.
B.
.
C.
.
D.
.
2
2
10
8
Câu 35. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
5 11 17
4 10 16
2 7 21
7 10 31
A. M( ; ; ).
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
3 3 3
3 3 3
3 3 3
3 3 6
3x
Câu 36. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
cắt đường thẳng y = x + m tại
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. m = 2.
B. m = 1.
C. Khơng tồn tại m.
D. m = −2.
Câu 37. Tính thể tích của khối trịn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2 ,
trục Ox và hai đường thẳng x = −1; x = 2 quay quanh trục Ox.
33π
31π
32π
A. 6π.
B.
.
C.
.
D.
.
5
5
5
Trang 3/5 Mã đề 001
Câu 38. Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′ =√2a. Gọi α là số đo góc giữa hai đường thẳng AC √
và DB′ . Tính giá trị cos α.√
5
1
3
3
.
B. .
C.
.
D.
.
A.
5
2
2
4
Câu 39. Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC là tam giác tù, AB = AC. Góc tạo bởi hai
đường thẳng AA′ và BC ′ bằng 300 ; khoảng cách giữa AA′ và BC ′ bằng a; góc giữa hai mặt phẳng
′ ′ ′
(ABB′ A′ √
) và (ACC ′ A′ ) bằng 600 . Tính
√ thể tích khối lăng trụ
√ABC.A B C .
√
3
3
3
B. 3a 3.
C. 9a 3.
D. 4a3 3.
A. 6a 3.
Câu 40. Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhất và nhỏ nhất
trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b = −36.
A. m = 4.
B. m = 0 hoặc m = −10.
C. m = 1.
D. m = 0 hoặc m = −16.
R
ax + b 2x
Câu 41. Biết a, b ∈ Z sao cho (x + 1)e2x dx = (
)e + C. Khi đó giá trị a + b là:
4
A. 1.
B. 3.
C. 4.
D. 2.
Câu 42. Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1; 2; 3)
−n (2; 1; −4).
và có một véc tơ pháp tuyến là →
A. −2x − y + 4z − 8 = 0.
B. 2x + y − 4z + 7 = 0.
C. 2x + y − 4z + 1 = 0.
D. 2x + y − 4z + 5 = 0.
Câu 43. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
B. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
2
2
2
C. (x − 1) + (y + 2) + (z − 4) = 1.
D. (x − 1)2 + (y − 2)2 + (z − 4)2 = 3.
Câu 44. Hình phẳng giới hạn bởi đồ thị hàm y = x2 +1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
1
1
1
1
B.
.
C. .
D. .
A. .
6
12
4
3
Câu 45. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 6π.
B. 10π.
C. 8π.
D. 12π.
Câu 46. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + 1 có hai điểm
cực trị nằm về hai phía trục Ox.
1
A. m > 1.
B. m < −2.
C. m > 1 hoặc m < − . D. m > 2 hoặc m < −1.
3
π
R2
Câu 47. Biết sin 2xdx = ea . Khi đó giá trị a là:
0
A. ln 2.
B. 0.
√
C. − ln 2.
D. 1.
Câu 48. Tính đạo hàm của hàm số y = log4 x2 − 1
x
x
x
1
A. y′ = 2
. B. y′ =
. C. y′ = 2
.
D. y′ = √
.
2
(x − 1)log4 e
2(x − 1) ln 4
(x − 1) ln 4
x2 − 1 ln 4
−u = (2; 1; 3),→
−v = (−1; 4; 3). Tìm tọa độ của
Câu 49. Trong khơng gian với hệ trục tọa độ Oxyz, cho →
−u + 3→
−v .
véc tơ 2→
→
−
→
−
−u + 3→
−v = (3; 14; 16).
A. 2 u + 3 v = (2; 14; 14).
B. 2→
−u + 3→
−v = (1; 14; 15).
−u + 3→
−v = (1; 13; 16).
C. 2→
D. 2→
Câu 50. Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình √
nón đỉnh S và đáy là hình√trịn nội tiếp tứ giác ABCD
√
√ bằng
2
2
2
πa 17
πa 17
πa 17
πa2 15
A.
.
B.
.
C.
.
D.
.
6
8
4
4
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001