Free LATEX
ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 6 trang)
Mã đề 001
Câu 1. Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A. Đường tròn.
B. Đường hypebol.
C. Đường parabol.
D. Đường elip.
Câu 2. Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
A. 4πR3 .
B. 2πR3 .
C. πR3 .
D. 6πR3 .
Câu 3. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Giao điểm của (P)
và trục tung có tọa độ là
A. (0; −5; 0).
B. (0; 1; 0).
C. (0; 5; 0).
D. (0; 0; 5).
3 + 2x
Câu 4. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y =
tại
x+1
hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
3
A. 1 < m , 4.
B. ∀m ∈ R .
C. −4 < m < 1.
D. m < .
2
Câu 5. Tính diện tích S của hình phẳng được giới hạn bởi các đường y = x2 , y = −x
1
1
5
1
A. S = .
B. S = .
C. S = .
D. S = .
3
6
6
2
Câu R6. Công thức nào sai?
R
A. R sin x = − cos x + C.
B. R e x = e x + C.
C. cos x = sin x + C.
D. a x = a x . ln a + C.
3
, ((ℵ) có đỉnh thuộc (S ) và đáy
2
là đường trịn nằm hồn tồn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn
nhất.
√
√
√
4 3π
2π
A. 2 3π.
B. 4 3π.
C.
.
D. √ .
3
3
→
−
Câu 8. Trong
hệ tọa độ Oxyz cho u (2; −2; 1), kết luận nào sau đây là đúng?
√ không gian với→
→
−
−
−u | = 9.
−u | = 3
A. | u | = 3.
B. | u | = 1.
C. |→
D. |→
Câu 7. Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R =
.
Câu 9. Đường cong trong hình bên là đồ thị của hàm số nào?
A. y = −x4 + 2x2 + 1 . B. y = x4 + 2x2 + 1 .
C. y = x4 + 1.
D. y = −x4 + 1 .
√
Câu 10. Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a 3. Tính khoảng cách giữa hai
đường √
thẳng BB′ và AC ′ .
√
√
√
a 2
a 3
a 3
A.
.
B. a 3.
C.
.
D.
.
2
2
4
√
Câu 11. Cho hàm số y = x− 2017 . Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm
số?
A. Có một tiệm cận ngang và một tiệm cận đứng. .
B. Khơng có tiệm cận ngang và có một tiệm cận đứng.
C. Khơng có tiệm cận.
D. Có một tiệm cận ngang và khơng có tiệm cận đứng.
Câu 12. Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng
biến thiên như hình bên. Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân
biệt.
Trang 1/6 Mã đề 001
7
A. ( ; +∞)
4
.
B. [22; +∞).
S
7
C. [ ; 2] [22; +∞).
4
S
7
D. ( ; 2] [22; +∞) .
4
Câu 13. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − 1 = 0. Viết phương trình
mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P).
1
1
A. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = .
B. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = .
3
3
C. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3.
D. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3.
√ x
Câu 14. Tìm nghiệm của phương trình 2 x = ( 3) .
A. x = −1.
B. x = 2.
C. x = 0.
D. x = 1.
Câu 15. Tìm tất cả các giá trị của tham số m để hàm số y = mx − sin xđồng biến trên R.
A. m ≥ 1.
B. m ≥ −1.
C. m ≥ 0.
D. m > 1.
Câu 16. Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét. Khi đó hình thang đã
cho có√diện tích lớn nhất bằng? √
√
3 3 2
3 3 2
(m ).
B.
(m ).
C. 1 (m2 ).
D. 3 3(m2 ).
A.
2
4
Câu 17. Tính diện tích S của hình phẳng được giới hạn bởi các đường y = x2 , y = −x
1
5
1
1
A. S = .
B. S = .
C. S = .
D. S = .
3
6
2
6
Câu R18. Công thức nào sai?
R
A. R cos x = sin x + C.
B. R sin x = − cos x + C.
C. e x = e x + C.
D. a x = a x . ln a + C.
Câu 19. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là
một điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM,
AN để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
C. C(20; 15; 7).
D. C(6; −17; 21).
A. C(6; 21; 21).
B. C(8; ; 19).
2
R1 √3
Câu 20. Tính I =
7x + 1dx
0
20
A. I = .
7
B. I =
21
.
8
C. I =
45
.
28
D. I =
60
.
28
Câu 21. Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3 + 6x2 + mx − 2 đi qua điểm (11;1)?
A. m = −15.
B. m = 13.
C. m = 3.
D. m = −2.
1
Câu 22. Kết luận nào sau đây về tính đơn điệu của hàm số y = là đúng?
x
A. Hàm số nghịch biến trên R.
B. Hàm số đồng biến trên R.
C. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).
D. Hàm số nghịch biến trên (0; +∞).
√
′
Câu 23. Cho lăng trụ đều ABC.A′ B′C ′ có đáy bằng a, AA
=
4
3a. Thể tích khối√lăng trụ đã cho là:
√ 3
3
3
A. a .
B. 3a .
C. 3a .
D. 8 3a3 .
Câu 24. Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm
số y = 3x2 + log3 x + m là:
A. S = (−∞; ln3).
B. S = [ -ln3; +∞).
C. S = [ 0; +∞).
D. S = (−∞; 2).
Câu 25. Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu
(S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S)
theo dây cung dài nhất.
A. x = 5 + 2ty = 5 + tz = 2 − 4t.
B. x = 3 + 2ty = 4 + tz = 6.
C. x = 5 + 2ty = 5 + tz = 2.
D. x = 5 + ty = 5 + 2tz = 2.
Trang 2/6 Mã đề 001
Câu 26. Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính
đường√trịn nội tiếp tam giác ABC
√
√
√ bằng
A. 4 2.
B. 3.
C. 5.
D. 2 5.
Câu 27. Cho hàm số y = 5 x −3x . Tính y′
2
A. y′ = (2x − 3)5 x −3x .
2
C. y′ = (x2 − 3x)5 x −3x ln 5.
2
B. y′ = 5 x −3x ln 5 .
2
D. y′ = (2x − 3)5 x −3x ln 5 .
2
Câu 28. Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước. Người ta thả vào đó một
khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngồi là 18π
(dm3). Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm
trong nước. Tính thể tích nước cịn lại trong bình.
A. 12π(dm3 ).
B. 24π(dm3 ).
C. 6π(dm3 ).
D. 54π(dm3 ).
2x − 3
Câu 29. Với giá trị nào của tham số m thì hàm số y =
đạt giá trị lớn nhất trên đoạn [1; 3] bằng
x + m2
1
:
4
√
A. m = ±1.
B. m = ±2.
C. m = ±3.
D. m = ± 3.
Câu 30. Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2). Đường phân
giác trong góc A của tam giác ABC cắt mặt phẳng (P) : x + y + z − 6 = 0 tại điểm nào trong các điểm
sau đây:
A. (−2; 3; 5).
B. (−2; 2; 6).
C. (1; −2; 7).
D. (4; −6; 8).
Câu 31. Tập xác định của hàm số y = logπ (3 x − 3) là:
A. [1; +∞).
B. (1; +∞).
C. Đáp án khác.
Câu 32. Cho
R4
−1
A. 18.
f (x)dx = 10 và
R4
1
B. −2.
f (x)dx = 8. Tính
R1
D. (3; +∞).
f (x)dx
−1
C. 2.
D. 0.
Câu 33. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = 0 và
mặt phẳng (P) có phương trình x + y + z − 4 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo một đường trịn có
chu vi √
là:
B. 8π.
C. 4π.
D. 2π.
A. 4 3π.
Câu 34. Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0. Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2 +MB2 +2MC 2
nhỏ nhất. Tính tổng a + b + c.
A. 1.
B. 3.
C. 2.
D. 4.
Câu 35. Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với 0 < a , 1. Chọn mệnh đề đúng.
A. P = 1.
B. P = 2 + 2(ln a)2 .
C. P = 2loga e.
D. P = 2 ln a.
Câu 36. Tìm tất cả các giá trị của tham số m để hàm số y = mx3 + mx2 − x + 2 nghịch biến trên R.
A. −4 ≤ m ≤ −1.
B. −3 ≤ m ≤ 0.
C. m < 0.
D. m > −2.
Câu 37. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 3a; cạnh S A vng góc với mặt
phẳng (ABCD), S A = 2a. Tính thể tích khối chóp S .ABCD.
A. 6a3 .
B. 12a3 .
C. 4a3 .
D. 3a3 .
Câu 38. Hàm số nào trong các hàm số sau đồng biến trên R.
A. y = −x3 − x2 − 5x.
B. y = x3 + 3x2 + 6x − 1.
4x + 1
.
C. y = x4 + 3x2 .
D. y =
x+2
Câu 39. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
7 10 31
5 11 17
2 7 21
4 10 16
A. M( ; ; ).
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
3 3 6
3 3 3
3 3 3
3 3 3
Trang 3/6 Mã đề 001
Câu 40. Chọn mệnh đề đúng trong các mệnh đề sau:
R3
R2
R3
A. |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx.
B.
C.
1
1
2
R3
R2
R3
1
1
2
R3
R2
R3
1
D.
|x2 − 2x|dx = (x2 − 2x)dx +
R3
1
|x2 − 2x|dx = |x2 − 2x|dx −
1
|x2 − 2x|dx = −
(x2 − 2x)dx.
|x2 − 2x|dx.
2
R2
1
(x2 − 2x)dx +
R3
(x2 − 2x)dx.
2
Câu 41. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vng góc với mặt phẳng
(ABC), S A = 2a. Gọi α là số đo góc giữa đường thẳng S B và mp(S AC). Tính giá trị sin α.
√
√
√
1
5
15
15
.
B.
.
C. .
D.
.
A.
3
5
2
10
Câu 42. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
C. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5 .
B. y′ = (1 − sin 3x)5 x+cos3x ln 5 .
D. y′ = 5 x+cos3x ln 5 .
Câu 43. Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC là tam giác tù, AB = AC. Góc tạo bởi hai
đường thẳng AA′ và BC ′ bằng 300 ; khoảng cách giữa AA′ và BC ′ bằng a; góc giữa hai mặt phẳng
(ABB′ A′ √
) và (ACC ′ A′ ) bằng 600 . Tính
thể tích khối lăng trụ√ABC.A′ B′C ′ .
√
√
A. 4a3 3.
B. 9a3 3.
C. 6a3 3.
D. 3a3 3.
Câu 44. Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0. Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2 +MB2 +2MC 2
nhỏ nhất. Tính tổng a + b + c.
A. 1.
B. 3.
C. 4.
D. 2.
Câu 45. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 3a; cạnh S A vng góc với mặt
phẳng (ABCD), S A = 2a. Tính thể tích khối chóp S .ABCD
A. 4a3 .
B. 12a3 .
C. 3a3 .
D. 6a3 .
Câu 46. Hàm số nào trong các hàm số sau đồng biến trên R.
4x + 1
A. y =
.
B. y = x4 + 3x2 .
x+2
C. y = x3 + 3x2 + 6x − 1.
D. y = −x3 − x2 − 5x.
√
Câu 47. Tính đạo hàm của hàm số y = log4 x2 − 1
x
x
x
A. y′ = 2
. B. y′ = 2
.
C. y′ =
.
2
(x − 1)log4 e
(x − 1) ln 4
2(x − 1) ln 4
Câu 48. Hàm số y = x3 − 3x2 + 1 có giá trị cực đại là:
A. 4.
B. −3.
C. 1.
D. y′ = √
1
x2 − 1 ln 4
.
D. 2.
Câu 49. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm
−n (2; 1; −4).
A(1; 2; 3) và có một véc tơ pháp tuyến là →
A. 2x + y − 4z + 7 = 0.
B. −2x − y + 4z − 8 = 0.
C. 2x + y − 4z + 5 = 0.
D. 2x + y − 4z + 1 = 0.
Câu 50. Hình phẳng giới hạn bởi đồ thị hàm y = x2 +1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
1
1
1
1
A. .
B. .
C. .
D. .
3
6
12
4
Trang 4/6 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/6 Mã đề 001