Free LATEX
ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 6 trang)
Mã đề 001
Câu 1. Cho lăng trụ đều ABC.A′ B′C ′ có tất cả các cạnh đều bằng a. Tính khoảng cách giữa hai đường
thẳng AB′ và BC ′ .
√
√
2a
a
5a
3a
.
C.
.
D. √ .
A. √ .
B.
3
2
5
5
ax + b
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
Câu 2. Cho hàm số y =
cx + d
A. bc > 0 .
B. ac < 0.
C. ad > 0 .
D. ab < 0 .
p
Câu 3. Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) 1 − y. Kết luận nào
sau đây là sai?
A. Nếu 0 < x < π thì y > 1 − 4π2 .
B. Nếux = 1 thì y = −3.
C. Nếux > 2 thìy < −15.
D. Nếu 0 < x < 1 thì y < −3.
Câu 4. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y =
hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
3
A. m < .
B. 1 < m , 4.
C. −4 < m < 1.
2
R1 √3
Câu 5. Tính I =
7x + 1dx
3 + 2x
tại
x+1
D. ∀m ∈ R .
0
60
A. I = .
28
B. I =
20
.
7
Câu 6. Kết quả nào đúng?
R
sin3 x
2
A. sin x cos x =
+ C.
3
R
C. sin2 x cos x = cos2 x. sin x + C.
C. I =
21
.
8
D. I =
45
.
28
B.
R
sin2 x cos x = −cos2 x. sin x + C.
D.
R
sin3 x
sin x cos x = −
+ C.
3
2
Câu 7. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Giao điểm của (P)
và trục tung có tọa độ là
A. (0; −5; 0).
B. (0; 1; 0).
C. (0; 5; 0).
D. (0; 0; 5).
√
Câu 8. Cho lăng trụ đều ABC.A′ B′C ′ có đáy bằng a, AA√′ = 4 3a. Thể tích khối√lăng trụ đã cho là:
D. 3a3 .
A. 3a3 .
B. a3 .
C. 8 3a3 .
Câu 9. Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y = x3 + x2 và y = x2 +3x+mcắt
nhau tại nhiều điểm nhất.
A. −2 ≤ m ≤ 2.
B. m = 2.
C. 0 < m < 2.
D. −2 < m < 2.
3
Câu 10. Cho hàm số y =
x
− mx + 5. Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực
trị.
A. 4.
B. 1.
C. 3.
D. 2.
√
x
Câu 11. Tìm nghiệm của phương trình 2 x = ( 3) .
A. x = 1.
B. x = 0.
C. x = −1.
D. x = 2.
√ sin 2x
Câu 12. Giá trị lớn nhất của hàm số y = ( π)
trên R bằng?
√
A. 0.
B. π.
C. 1.
D. π.
Trang 1/6 Mã đề 001
Câu 13. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x−1
y+2
z
=
= . Viết phương
1
−1
2
trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vng góc với d.
A. (P) : x − 2y − 2 = 0. B. (P) : x + y + 2z = 0. C. (P) : x − y − 2z = 0. D. (P) : x − y + 2z = 0.
Câu 14. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 và đường thẳng y = x.
1
1
2
C. − .
D. .
A. 1.
B. .
3
6
6
Câu 15. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − 1 = 0. Viết phương trình
mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P).
A. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3.
B. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3.
1
1
D. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = .
C. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = .
3
3
′′
2
Câu 16. Cho hàm số f (x) thỏa mãn f (x) = 12x + 6x − 4 và f (0) = 1, f (1) = 3. Tính f (−1).
A. f (−1) = −1.
B. f (−1) = −5.
C. f (−1) = −3.
D. f (−1) = 3.
ax + b
Câu 17. Cho hàm số y =
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
cx + d
A. ac < 0.
B. ad > 0 .
C. bc > 0 .
D. ab < 0 .
Câu 18. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s).
Tính qng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động.
A. S = 20 (m).
B. S = 28 (m).
C. S = 24 (m).
D. S = 12 (m).
Câu R19. Công thức nào sai?
A. R cos x = sin x + C.
C. a x = a x . ln a + C.
R
B. R sin x = − cos x + C.
D. e x = e x + C.
Câu 20. Hàm số nào sau đây đồng biến trên R?
A. y = x4 + 3x2 + 2.
C. y = tan x.
√
√
B. y = x2 + x + 1 − x2 − x + 1.
D. y = x2 .
Câu 21. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là
một điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM,
AN để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
B. C(6; 21; 21).
C. C(20; 15; 7).
D. C(6; −17; 21).
A. C(8; ; 19).
2
Câu 22. Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 20a3 .
B. 60a3 .
C. 30a3 .
D. 100a3 .
Câu 23. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Giao điểm của (P)
và trục tung có tọa độ là
A. (0; −5; 0).
B. (0; 0; 5).
C. (0; 1; 0).
D. (0; 5; 0).
Câu 24. Kết quả nào đúng?
R
A. sin2 x cos x = cos2 x. sin x + C.
R
C. sin2 x cos x = −cos2 x. sin x + C.
sin3 x
B. sin x cos x = −
+ C.
3
3
R
sin x
D. sin2 x cos x =
+ C.
3
Câu 25. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
3
4
A. πR3 .
B. 4πR3 .
C. πR3 .
D. πR3 .
4
3
2
Câu 26. Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x − 4x + 5, tiếp tuyến tại
A(1; 2) và tiếp tuyến tại B(4; 5) của đồ thị (C).
5
7
3
9
B. .
C. .
D. .
A. .
4
4
4
4
R
2
Trang 2/6 Mã đề 001
2x − 3
Câu 27. Với giá trị nào của tham số m thì hàm số y =
đạt giá trị lớn nhất trên đoạn [1; 3] bằng
x + m2
1
:
4
√
A. m = ±1.
B. m = ±2.
C. m = ±3.
D. m = ± 3.
√3
a2 b
Câu 28. Biết loga b = 2, loga c = 3 với a, b, c > 0; a , 1. Khi đó giá trị của loga (
) bằng
c
2
1
A. 6.
B. 5.
C. − .
D. .
3
3
n
e
R ln x
Câu 29. Tính tích phân I =
dx, (n > 1).
x
1
1
1
1
.
B. I = n + 1.
C. I = .
D. I =
.
A. I =
n−1
n
n+1
1
1
Câu 30. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có
3
3
hai điểm cực trị nằm về phía bên phải trục tung?
A. m > 2.
B. m > 3.
C. m > 3 hoặc m < 2. D. m < 2.
x−3
y−6
z−1
Câu 31. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :
=
=
và
−2
2
1
d2 : x = ty = −tz = 2 (t ∈ R). Đường thẳng đi qua điểm A(0; 1; 1), vng góc với d1 và cắt d2 có phương
trình là:
x
y−1 z−1
x y−1 z−1
A.
=
=
.
B. =
=
.
−1
−3
4
1
−3
4
x
y−1 z−1
x−1
y
z−1
C.
=
=
.
D.
=
=
.
−1
3
4
−1
−3
4
R4
R4
R1
Câu 32. Cho f (x)dx = 10 và f (x)dx = 8. Tính f (x)dx
−1
A. 18.
1
B. 2.
−1
C. 0.
D. −2.
Câu 33. Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2). Đường phân
giác trong góc A của tam giác ABC cắt mặt phẳng (P) : x + y + z − 6 = 0 tại điểm nào trong các điểm
sau đây:
A. (4; −6; 8).
B. (1; −2; 7).
C. (−2; 2; 6).
D. (−2; 3; 5).
√
Câu 34. Tính đạo hàm của hàm số y = log4 x2 − 1
x
1
x
x
A. y′ =
. B. y′ = √
. C. y′ = 2
. D. y′ = 2
.
2
2(x − 1) ln 4
(x − 1)log4 e
(x − 1) ln 4
x2 − 1 ln 4
Câu 35. Tìm tất cả các giá trị của tham số m để hàm số y = mx3 + mx2 − x + 2 nghịch biến trên R.
A. m < 0.
B. −4 ≤ m ≤ −1.
C. −3 ≤ m ≤ 0.
D. m > −2.
Câu 36. Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC là tam giác tù, AB = AC. Góc tạo bởi hai
đường thẳng AA′ và BC ′ bằng 300 ; khoảng cách giữa AA′ và BC ′ bằng a; góc giữa hai mặt phẳng
(ABB′ A′ √
) và (ACC ′ A′ ) bằng 600 . Tính
thể tích khối lăng trụ√ABC.A′ B′C ′ .
√
√
A. 3a3 3.
B. 6a3 3.
C. 9a3 3.
D. 4a3 3.
√
Câu 37. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình vơ nghiệm.
B. Bất phương trình đúng với mọi x ∈ (4; +∞).
C. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
D. Bất phương trình đúng với mọi x ∈ [ 1; 3].
Câu 38. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
4 10 16
2 7 21
5 11 17
7 10 31
A. M( ; ; ).
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
3 3 6
3 3 3
3 3 3
3 3 3
Trang 3/6 Mã đề 001
Câu 39. Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2 + y2 + z2 − 4x − 6y + 2z − 1 = 0.
√
√
A. R = 14.
B. R = 3.
C. R = 4.
D. R = 15.
Câu 40. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 1 thì a x > ay ⇔ x > y.
B. Nếu a > 0 thì a x = ay ⇔ x = y.
C. Nếu a < 1 thì a x > ay ⇔ x < y.
D. Nếu a > 0 thì a x > ay ⇔ x < y.
Câu 41. Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′ = 2a. Gọi α là số đo góc giữa hai đường thẳng AC và DB′ . Tính giá trị cos α.
√
√
√
1
3
3
5
.
B.
.
C. .
D.
.
A.
2
4
2
5
cos x
π
Câu 42. Biết hàm F(x) là một nguyên hàm của hàm f (x) =
và F(− ) = π. Khi đó giá trị
sin x + 2 cos x
2
F(0) bằng:
6π
6π
1
3π
1
6π
A. ln 2 + .
B.
.
C. ln 2 + .
D. ln 2 + .
5
5
4
2
5
5
π
cos x
Câu 43. Biết hàm F(x) là một nguyên hàm của hàm f (x) =
và F(− ) = π. Khi đó giá trị
sin x + 2 cos x
2
F(0) bằng:
1
3π
1
6π
6π
6π
A. ln 2 + .
B. ln 2 + .
C. ln 2 + .
D. .
4
2
5
5
5
5
Câu 44. Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với 0 < a , 1. Chọn mệnh đề đúng.
A. P = 1.
B. P = 2loga e.
C. P = 2 ln a.
D. P = 2 + 2(ln a)2 .
Câu 45. Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2 + y2 + z2 − 4x − 6y + 2z − 1 = 0.
√
√
A. R = 14.
B. R = 15.
C. R = 4.
D. R = 3.
Câu 46. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
B. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
C. (x − 1)2 + (y − 2)2 + (z − 4)2 = 3.
D. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
Câu 47. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a < 1 thì a x > ay ⇔ x < y.
B. Nếu a > 1 thì a x > ay ⇔ x > y.
C. Nếu a > 0 thì a x = ay ⇔ x = y.
D. Nếu a > 0 thì a x > ay ⇔ x < y.
−u = (2; 1; 3),→
−v = (−1; 4; 3). Tìm tọa độ của
Câu 48. Trong không gian với hệ trục tọa độ Oxyz, cho →
→
−
→
−
véc tơ 2 u + 3 v .
−u + 3→
−v = (2; 14; 14).
−u + 3→
−v = (1; 13; 16).
A. 2→
B. 2→
−u + 3→
−v = (3; 14; 16).
−u + 3→
−v = (1; 14; 15).
C. 2→
D. 2→
Câu 49. Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhất và nhỏ nhất
trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b = −36.
A. m = 4.
B. m = 0 hoặc m = −10.
C. m = 0 hoặc m = −16.
D. m = 1.
Câu 50. Cho tứ diện DABC, tam giácABC là vuông tại B, DA vng góc với mặt phẳng (ABC). Biết
AB = 3a, BC = 4a, DA = 5a. Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng
√
√
√
√
5a 2
5a 3
5a 3
5a 2
.
B.
.
C.
.
D.
.
A.
3
2
2
3
Trang 4/6 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/6 Mã đề 001