Tải bản đầy đủ (.pdf) (5 trang)

Đề luyện thi thpt môn toán (564)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.82 KB, 5 trang )

Free LATEX

ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 6 trang)
Mã đề 001

Câu 1. Cho lăng trụ đều ABC.A′ B′C ′ có tất cả các cạnh đều bằng a. Tính khoảng cách giữa hai đường
thẳng AB′ và BC ′ .


2a
a
5a
3a
.
C.
.
D. √ .
A. √ .
B.
3
2
5
5
ax + b
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
Câu 2. Cho hàm số y =
cx + d
A. bc > 0 .


B. ac < 0.
C. ad > 0 .
D. ab < 0 .
p
Câu 3. Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) 1 − y. Kết luận nào
sau đây là sai?
A. Nếu 0 < x < π thì y > 1 − 4π2 .
B. Nếux = 1 thì y = −3.
C. Nếux > 2 thìy < −15.
D. Nếu 0 < x < 1 thì y < −3.
Câu 4. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y =
hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
3
A. m < .
B. 1 < m , 4.
C. −4 < m < 1.
2
R1 √3
Câu 5. Tính I =
7x + 1dx

3 + 2x
tại
x+1

D. ∀m ∈ R .

0

60

A. I = .
28

B. I =

20
.
7

Câu 6. Kết quả nào đúng?
R
sin3 x
2
A. sin x cos x =
+ C.
3
R
C. sin2 x cos x = cos2 x. sin x + C.

C. I =

21
.
8

D. I =

45
.
28


B.

R

sin2 x cos x = −cos2 x. sin x + C.

D.

R

sin3 x
sin x cos x = −
+ C.
3
2

Câu 7. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Giao điểm của (P)
và trục tung có tọa độ là
A. (0; −5; 0).
B. (0; 1; 0).
C. (0; 5; 0).
D. (0; 0; 5).

Câu 8. Cho lăng trụ đều ABC.A′ B′C ′ có đáy bằng a, AA√′ = 4 3a. Thể tích khối√lăng trụ đã cho là:
D. 3a3 .
A. 3a3 .
B. a3 .
C. 8 3a3 .
Câu 9. Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y = x3 + x2 và y = x2 +3x+mcắt

nhau tại nhiều điểm nhất.
A. −2 ≤ m ≤ 2.
B. m = 2.
C. 0 < m < 2.
D. −2 < m < 2.




3
Câu 10. Cho hàm số y =


x


− mx + 5. Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực
trị.
A. 4.
B. 1.
C. 3.
D. 2.

x
Câu 11. Tìm nghiệm của phương trình 2 x = ( 3) .
A. x = 1.
B. x = 0.
C. x = −1.
D. x = 2.
√ sin 2x

Câu 12. Giá trị lớn nhất của hàm số y = ( π)
trên R bằng?

A. 0.
B. π.
C. 1.
D. π.
Trang 1/6 Mã đề 001


Câu 13. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

x−1
y+2
z
=
= . Viết phương
1
−1
2

trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vng góc với d.
A. (P) : x − 2y − 2 = 0. B. (P) : x + y + 2z = 0. C. (P) : x − y − 2z = 0. D. (P) : x − y + 2z = 0.
Câu 14. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 và đường thẳng y = x.
1
1
2
C. − .
D. .
A. 1.

B. .
3
6
6
Câu 15. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − 1 = 0. Viết phương trình
mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P).
A. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3.
B. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3.
1
1
D. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = .
C. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = .
3
3
′′
2
Câu 16. Cho hàm số f (x) thỏa mãn f (x) = 12x + 6x − 4 và f (0) = 1, f (1) = 3. Tính f (−1).
A. f (−1) = −1.
B. f (−1) = −5.
C. f (−1) = −3.
D. f (−1) = 3.
ax + b
Câu 17. Cho hàm số y =
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
cx + d
A. ac < 0.
B. ad > 0 .
C. bc > 0 .
D. ab < 0 .
Câu 18. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s).

Tính qng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động.
A. S = 20 (m).
B. S = 28 (m).
C. S = 24 (m).
D. S = 12 (m).
Câu R19. Công thức nào sai?
A. R cos x = sin x + C.
C. a x = a x . ln a + C.

R
B. R sin x = − cos x + C.
D. e x = e x + C.

Câu 20. Hàm số nào sau đây đồng biến trên R?
A. y = x4 + 3x2 + 2.
C. y = tan x.



B. y = x2 + x + 1 − x2 − x + 1.
D. y = x2 .

Câu 21. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là
một điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM,
AN để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
B. C(6; 21; 21).
C. C(20; 15; 7).
D. C(6; −17; 21).
A. C(8; ; 19).

2
Câu 22. Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 20a3 .
B. 60a3 .
C. 30a3 .
D. 100a3 .
Câu 23. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Giao điểm của (P)
và trục tung có tọa độ là
A. (0; −5; 0).
B. (0; 0; 5).
C. (0; 1; 0).
D. (0; 5; 0).
Câu 24. Kết quả nào đúng?
R
A. sin2 x cos x = cos2 x. sin x + C.
R
C. sin2 x cos x = −cos2 x. sin x + C.

sin3 x
B. sin x cos x = −
+ C.
3
3
R
sin x
D. sin2 x cos x =
+ C.
3

Câu 25. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
3
4
A. πR3 .
B. 4πR3 .
C. πR3 .
D. πR3 .
4
3
2
Câu 26. Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x − 4x + 5, tiếp tuyến tại
A(1; 2) và tiếp tuyến tại B(4; 5) của đồ thị (C).
5
7
3
9
B. .
C. .
D. .
A. .
4
4
4
4
R

2

Trang 2/6 Mã đề 001



2x − 3
Câu 27. Với giá trị nào của tham số m thì hàm số y =
đạt giá trị lớn nhất trên đoạn [1; 3] bằng
x + m2
1
:
4

A. m = ±1.
B. m = ±2.
C. m = ±3.
D. m = ± 3.
√3
a2 b
Câu 28. Biết loga b = 2, loga c = 3 với a, b, c > 0; a , 1. Khi đó giá trị của loga (
) bằng
c
2
1
A. 6.
B. 5.
C. − .
D. .
3
3
n
e
R ln x
Câu 29. Tính tích phân I =

dx, (n > 1).
x
1
1
1
1
.
B. I = n + 1.
C. I = .
D. I =
.
A. I =
n−1
n
n+1
1
1
Câu 30. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có
3
3
hai điểm cực trị nằm về phía bên phải trục tung?
A. m > 2.
B. m > 3.
C. m > 3 hoặc m < 2. D. m < 2.
x−3
y−6
z−1
Câu 31. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :
=
=


−2
2
1
d2 : x = ty = −tz = 2 (t ∈ R). Đường thẳng đi qua điểm A(0; 1; 1), vng góc với d1 và cắt d2 có phương
trình là:
x
y−1 z−1
x y−1 z−1
A.
=
=
.
B. =
=
.
−1
−3
4
1
−3
4
x
y−1 z−1
x−1
y
z−1
C.
=
=

.
D.
=
=
.
−1
3
4
−1
−3
4
R4
R4
R1
Câu 32. Cho f (x)dx = 10 và f (x)dx = 8. Tính f (x)dx
−1

A. 18.

1

B. 2.

−1

C. 0.

D. −2.

Câu 33. Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2). Đường phân

giác trong góc A của tam giác ABC cắt mặt phẳng (P) : x + y + z − 6 = 0 tại điểm nào trong các điểm
sau đây:
A. (4; −6; 8).
B. (1; −2; 7).
C. (−2; 2; 6).
D. (−2; 3; 5).

Câu 34. Tính đạo hàm của hàm số y = log4 x2 − 1
x
1
x
x
A. y′ =
. B. y′ = √
. C. y′ = 2
. D. y′ = 2
.
2
2(x − 1) ln 4
(x − 1)log4 e
(x − 1) ln 4
x2 − 1 ln 4
Câu 35. Tìm tất cả các giá trị của tham số m để hàm số y = mx3 + mx2 − x + 2 nghịch biến trên R.
A. m < 0.
B. −4 ≤ m ≤ −1.
C. −3 ≤ m ≤ 0.
D. m > −2.
Câu 36. Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC là tam giác tù, AB = AC. Góc tạo bởi hai
đường thẳng AA′ và BC ′ bằng 300 ; khoảng cách giữa AA′ và BC ′ bằng a; góc giữa hai mặt phẳng
(ABB′ A′ √

) và (ACC ′ A′ ) bằng 600 . Tính
thể tích khối lăng trụ√ABC.A′ B′C ′ .


A. 3a3 3.
B. 6a3 3.
C. 9a3 3.
D. 4a3 3.


Câu 37. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình vơ nghiệm.
B. Bất phương trình đúng với mọi x ∈ (4; +∞).
C. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
D. Bất phương trình đúng với mọi x ∈ [ 1; 3].
Câu 38. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
4 10 16
2 7 21
5 11 17
7 10 31
A. M( ; ; ).
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
3 3 6
3 3 3
3 3 3
3 3 3
Trang 3/6 Mã đề 001



Câu 39. Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2 + y2 + z2 − 4x − 6y + 2z − 1 = 0.


A. R = 14.
B. R = 3.
C. R = 4.
D. R = 15.
Câu 40. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 1 thì a x > ay ⇔ x > y.
B. Nếu a > 0 thì a x = ay ⇔ x = y.
C. Nếu a < 1 thì a x > ay ⇔ x < y.
D. Nếu a > 0 thì a x > ay ⇔ x < y.
Câu 41. Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′ = 2a. Gọi α là số đo góc giữa hai đường thẳng AC và DB′ . Tính giá trị cos α.



1
3
3
5
.
B.
.
C. .
D.
.

A.
2
4
2
5
cos x
π
Câu 42. Biết hàm F(x) là một nguyên hàm của hàm f (x) =
và F(− ) = π. Khi đó giá trị
sin x + 2 cos x
2
F(0) bằng:


1

1

A. ln 2 + .
B.
.
C. ln 2 + .
D. ln 2 + .
5
5
4
2
5
5
π

cos x
Câu 43. Biết hàm F(x) là một nguyên hàm của hàm f (x) =
và F(− ) = π. Khi đó giá trị
sin x + 2 cos x
2
F(0) bằng:
1

1



A. ln 2 + .
B. ln 2 + .
C. ln 2 + .
D. .
4
2
5
5
5
5
Câu 44. Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với 0 < a , 1. Chọn mệnh đề đúng.
A. P = 1.
B. P = 2loga e.
C. P = 2 ln a.
D. P = 2 + 2(ln a)2 .
Câu 45. Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2 + y2 + z2 − 4x − 6y + 2z − 1 = 0.



A. R = 14.
B. R = 15.
C. R = 4.
D. R = 3.
Câu 46. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
B. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
C. (x − 1)2 + (y − 2)2 + (z − 4)2 = 3.
D. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
Câu 47. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a < 1 thì a x > ay ⇔ x < y.
B. Nếu a > 1 thì a x > ay ⇔ x > y.
C. Nếu a > 0 thì a x = ay ⇔ x = y.
D. Nếu a > 0 thì a x > ay ⇔ x < y.
−u = (2; 1; 3),→
−v = (−1; 4; 3). Tìm tọa độ của
Câu 48. Trong không gian với hệ trục tọa độ Oxyz, cho →




véc tơ 2 u + 3 v .
−u + 3→
−v = (2; 14; 14).
−u + 3→
−v = (1; 13; 16).
A. 2→
B. 2→

−u + 3→
−v = (3; 14; 16).
−u + 3→
−v = (1; 14; 15).
C. 2→
D. 2→
Câu 49. Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhất và nhỏ nhất
trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b = −36.
A. m = 4.
B. m = 0 hoặc m = −10.
C. m = 0 hoặc m = −16.
D. m = 1.
Câu 50. Cho tứ diện DABC, tam giácABC là vuông tại B, DA vng góc với mặt phẳng (ABC). Biết
AB = 3a, BC = 4a, DA = 5a. Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng




5a 2
5a 3
5a 3
5a 2
.
B.
.
C.
.
D.
.
A.

3
2
2
3
Trang 4/6 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/6 Mã đề 001



×