Tải bản đầy đủ (.pdf) (5 trang)

Đề luyện thi thpt môn toán (732)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.8 KB, 5 trang )

Free LATEX

ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 6 trang)

Mã đề 001
3 + 2x
tại
Câu 1. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y =
x+1
hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
3
A. ∀m ∈ R .
B. m < .
C. 1 < m , 4.
D. −4 < m < 1.
2

′ ′ ′
Câu 2.√Cho lăng trụ đều ABC.A
B C có đáy bằng a, AA′ = 4 3a. Thể tích khối lăng trụ đã cho là:

B. 3a3 .
C. 3a3 .
D. a3 .
A. 8 3a3 .
Câu 3. Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
A. y = x2 − 2x + 2.
B. y = x3 − 2x2 + 3x + 2.


C. y = −x4 + 3x2 − 2.
D. y = x3 .
Câu 4. Số nghiệm của phương trình 9 x + 5.3 x − 6 = 0 là
A. 0.
B. 2.
C. 1.






D. 4.



Câu 5. Cho hình hộp ABCD.A B C D có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 30a3 .
B. 100a3 .
C. 60a3 .
D. 20a3 .
Câu 6. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Tọa độ của một véc
tơ pháp tuyến của (P) là
A. (−2; −1; 2).
B. (2; −1; 2).
C. (−2; 1; 2).
D. (2; −1; −2).
Câu 7. Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua

mặt phẳng Oxz?
A. M ′ (2; 3; 1).
B. M ′ (−2; 3; 1).
C. M ′ (−2; −3; −1).
D. M ′ (2; −3; −1).
Câu 8. Cho hai số thực a, bthỏa mãn√ a > b > 0. Kết luận√ nào sau
đây là sai?



√5
5
2
2
a
b
C. a > b .
D. a− 3 < b− 3 .
A. e > e .
B. a < b.
Câu 9. Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − 1 = 0 và mặt phẳng
(P) : x + y − 3z + m − 1 = 0. Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường trịn có bán kính
lớn nhất.
A. m = −7.
B. m = 7.
C. m = 9.
D. m = 5.
Câu 10. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = 1 + 2ty = 2 + (m − 1)tz = 3 − t.
Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
A. m , −1.

B. m , 0.
C. m , 1.
D. m = 1.

Câu
11.
Cho
hình
chóp
S
.ABC

S
A⊥(ABC).
Tam
giác
ABC
vng
cân
tại
B

S
A
=
a
6, S B =

a 7. Tính góc giữa SC và mặt phẳng (ABC).
A. 300 .

B. 450 .
C. 1200 .
D. 600 .
2x + 2017
(1). Mệnh đề nào dưới đây là đúng?
Câu 12. Cho hàm số y =






x

+ 1



A. Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y = 2 và không có tiệm cận đứng.
B. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x = −1, x = 1..
C. Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và khơng có tiệm cận
đứng.
Trang 1/6 Mã đề 001


D. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = −1..
Câu 13. Biết

R5

1

A. T = 9.

dx
= ln T. Giá trị của T là:
2x − 1

B. T = 3.

C. T = 3.

D. T = 81.

Câu 14. Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a 3. Tính khoảng cách giữa hai
đường √
thẳng BB′ và AC ′ .



a 3
a 3
a 2
A.
D.
.
B.
.
C. a 3.
.

2
2
4
x−1
y+2
z
Câu 15. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
=
= . Viết phương
1
−1
2
trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vng góc với d.
A. (P) : x − 2y − 2 = 0. B. (P) : x + y + 2z = 0. C. (P) : x − y + 2z = 0. D. (P) : x − y − 2z = 0.
Câu 16. Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3). Tìm tọa độ điểm A là hình chiếu
của M trên mặt phẳng (Oxy).
A. A(0; 0; 3).
B. A(0; 2; 3).
C. A(1; 0; 3).
D. A(1; 2; 0).
3
Câu 17. Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) và đáy
2
là đường trịn nằm hồn tồn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn
nhất.



4 3π


C. 4 3π.
D.
.
A. √ .
B. 2 3π.
3
3
x
trên tập xác định của nó là
Câu 18. Giá trị nhỏ nhất của hàm số y = 2
x +1
1
1
A. min y = − .
B. min y = .
C. min y = −1.
D. min y = 0.
R
R
R
R
2
2
2x
x
2x
Câu 19. Tính tổng tất cả các nghiệm của phương trình 6.2 − 13.6 + 6.3 = 0
13
A. .
B. 0.

C. 1.
D. −6.
6
Câu 20. Cho
mãn√ a > b > 0. Kết luận
nào sau
đây là sai?



√5 hai số thực a, bthỏa
√5
2
2
− 3
− 3
A. a < b.
B. a > b .
C. a
D. ea > eb .
Câu 21. Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (−2; −3; −1).
B. M ′ (2; 3; 1).
C. M ′ (−2; 3; 1).
D. M ′ (2; −3; −1).
Câu 22. Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
A. 2πR3 .
B. 6πR3 .

C. πR3 .
D. 4πR3 .
Câu 23. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − 5 = 0. Bán kính R
của (S) bằng

√ bao nhiêu?
B. R = 3.
C. R = 21.
D. R = 9.
A. R = 29.
3 + 2x
Câu 24. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y =
tại
x+1
hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
3
A. −4 < m < 1.
B. 1 < m , 4.
C. ∀m ∈ R.
D. m < .
2
Câu 25. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (0; −2; 0).
B. (−2; 0; 0).
C. (0; 6; 0).
D. (0; 2; 0).
Câu 26. Tứ diện OABC có OA = OB = OC = a và đơi một vng góc. Gọi M, N, P lần lượt là trung
điểm AB, BC, CA. Thể tích tứ diện OMNP là
a3

a3
a3
a3
A. .
B.
.
C. .
D. .
6
12
24
4
Trang 2/6 Mã đề 001


Câu 27. Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước. Người ta thả vào đó một
khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngồi là 18π
(dm3). Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm
trong nước. Tính thể tích nước cịn lại trong bình.
A. 6π(dm3 ).
B. 24π(dm3 ).
C. 12π(dm3 ).
D. 54π(dm3 ).

x− x+2
có tất cả bao nhiêu tiệm cận?
Câu 28. Đồ thị của hàm số y =
x2 − 4
A. 1.
B. 3.

C. 2.
D. 0.
Câu 29. Cho hình chóp đều S .ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC
o
Biết góc
√ sin của góc giữa MN và√mặt phẳng (S BD)
√ giữa MN và mặt phẳng (ABCD) bằng 60 . Tính
10
2
3
5
.
B. .
C.
.
D.
.
A.
5
5
4
5
Câu 30. Trong khơng gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2). Đường phân
giác trong góc A của tam giác ABC cắt mặt phẳng (P) : x + y + z − 6 = 0 tại điểm nào trong các điểm
sau đây:
A. (1; −2; 7).
B. (−2; 2; 6).
C. (−2; 3; 5).
D. (4; −6; 8).
Câu 31. Tập xác định của hàm số y = logπ (3 x − 3) là:

A. [1; +∞).
B. (1; +∞).
C. (3; +∞).

D. Đáp án khác.

Câu 32. Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm
cực đại có hồnh độ nhỏ hơn 1.
A. S = (−1; +∞) .
B. S = (−∞; −4) ∪ (−1; +∞) .
C. S = [−1; +∞) .
D. S = (−4; −1).
Câu 33. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
B. −6.
C. 0.
D. 1.
A. .
6
π
R2
Câu 34. Biết sin 2xdx = ea . Khi đó giá trị a là:
0

A. 0.

B. − ln 2.

C. 1.


D. ln 2.

Câu 35. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x trên đoạn [−1; 2] lần lượt là M, m.
Tính M + m.
A. 5.
B. 4.
C. 6.
D. 3.
x2 + mx + 1
đạt cực tiểu tại điểm x = 0.
x+1
C. m = 0.
D. Khơng có m.

Câu 36. Tìm tất cả các giá trị của tham số m để hàm số y =
A. m = −1.

B. m = 1.

3x
Câu 37. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
cắt đường thẳng y = x + m tại
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. m = 2.
B. Không tồn tại m.
C. m = −2.
D. m = 1.

Câu 38. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 2.
B. m = 1.
C. m = 4.
D. m = 3.
cos x
π
và F(− ) = π. Khi đó giá trị
Câu 39. Biết hàm F(x) là một nguyên hàm của hàm f (x) =
sin x + 2 cos x
2
F(0) bằng:
1

1



A. ln 2 + .
B. ln 2 + .
C. .
D. ln 2 + .
4
2
5
5
5
5
Trang 3/6 Mã đề 001



Câu 40. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
2 7 21
4 10 16
5 11 17
7 10 31
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
A. M( ; ; ).
3 3 6
3 3 3
3 3 3
3 3 3
Câu 41. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + 1 có hai điểm
cực trị nằm về hai phía trục Ox.
1
A. m < −2.
B. m > 1 hoặc m < − . C. m > 2 hoặc m < −1. D. m > 1.
3
Câu 42. Hàm số y = x4 − 4x2 + 1 đồng biến trên khoảng nào trong các khoảng sau đây.
A. (1; 5).
B. (3; 5).
C. (−1; 1).
D. (−3; 0).
Câu 43. Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0. Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2 +MB2 +2MC 2
nhỏ nhất. Tính tổng a + b + c.

A. 2.
B. 4.
C. 3.
D. 1.
Câu 44. Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với 0 < a , 1. Chọn mệnh đề đúng.
A. P = 2 ln a.
B. P = 1.
C. P = 2 + 2(ln a)2 .
D. P = 2loga e.
Câu 45. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 3.
B. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
C. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
D. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
Câu 46. Hàm số nào trong các hàm số sau đồng biến trên R.
4x + 1
A. y =
.
B. y = −x3 − x2 − 5x.
x+2
C. y = x4 + 3x2 .
D. y = x3 + 3x2 + 6x − 1.
Câu 47. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 3a; cạnh S A vng góc với mặt
phẳng (ABCD), S A = 2a. Tính thể tích khối chóp S .ABCD
A. 12a3 .
B. 4a3 .
C. 3a3 .
D. 6a3 .
Câu 48. Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhất và nhỏ nhất

trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b = −36.
A. m = 4.
B. m = 0 hoặc m = −16.
C. m = 0 hoặc m = −10.
D. m = 1.


Câu 49. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình vơ nghiệm.
B. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
C. Bất phương trình đúng với mọi x ∈ [ 1; 3].
D. Bất phương trình đúng với mọi x ∈ (4; +∞).
Câu 50. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 0 thì a x = ay ⇔ x = y.
B. Nếu a > 0 thì a x > ay ⇔ x < y.
C. Nếu a < 1 thì a x > ay ⇔ x < y.
D. Nếu a > 1 thì a x > ay ⇔ x > y.
Trang 4/6 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/6 Mã đề 001