Tải bản đầy đủ (.pdf) (5 trang)

Đề luyện thi thpt môn toán (919)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (119.61 KB, 5 trang )

Free LATEX

ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 6 trang)
Mã đề 001

Câu 1. Cho a > 1; 0 < x < y. Bất đẳng thức nào sau đây là đúng?
A. log 1 x > log 1 y.
B. ln x > ln y.
C. log x > log y.
a

a

Câu 2. Cho hàm số y =
A. ad > 0 .

D. loga x > loga y.

ax + b
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
cx + d
B. ac < 0.
C. ab < 0 .
D. bc > 0 .

Câu 3. Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3 + 6x2 + mx − 2 đi qua điểm (11;1)?
A. m = 3.


B. m = 13.
C. m = −15.
D. m = −2.
Câu 4. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
A. m ∈ (−1; 2).
B. m ∈ (0; 2).
C. m ≥ 0.
D. −1 < m < .
2

x
Câu 5. Đồ thị hàm số y = ( 3 − 1) có dạng nào trong các hình H1, H2, H3, H4 sau đây?
A. (H1).
B. (H4).
C. (H2) .
D. (H3).
1
là đúng?
x
B. Hàm số nghịch biến trên (0; +∞).
D. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).

Câu 6. Kết luận nào sau đây về tính đơn điệu của hàm số y =
A. Hàm số đồng biến trên R.
C. Hàm số nghịch biến trên R.

Câu 7. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s). Tính
qng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?

A. S = 20 (m).
B. S = 12 (m).
C. S = 28 (m).
D. S = 24 (m).
Câu 8. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
3
4
A. 4πR3 .
B. πR3 .
C. πR3 .
D. πR3 .
4
3

Câu 9. Tìm tất cả các khoảng đồng biến của hàm số y = x − 2 x + 2017.
1
1
A. (1; +∞) .
B. (0; ).
C. (0; 1).
D. ( ; +∞).
4
4
Câu 10. Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y = x3 +x2 và y = x2 +3x+mcắt
nhau tại nhiều điểm nhất.
A. −2 < m < 2.
B. −2 ≤ m ≤ 2.
C. 0 < m < 2.
D. m = 2.
R

Câu 11. Biết f (u)du = F(u) + C Mệnh đề nào dưới đây đúng?
R
R
1
A. f (2x − 1)dx = F(2x − 1) + C.
B. f (2x − 1)dx = F(2x − 1) + C .
2
R
R
C. f (2x − 1)dx = 2F(x) − 1 + C.
D. f (2x − 1)dx = 2F(2x − 1) + C.
Câu 12. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

x−1
y+2
z
=
= . Viết phương
1
−1
2

trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vng góc với d.
A. (P) : x − y + 2z = 0. B. (P) : x + y + 2z = 0. C. (P) : x − 2y − 2 = 0. D. (P) : x − y − 2z = 0.
Câu 13. Đường cong trong hình bên là đồ thị của hàm số nào?
A. y = −x4 + 2x2 + 1 . B. y = −x4 + 1 .
C. y = x4 + 1.

D. y = x4 + 2x2 + 1 .
Trang 1/6 Mã đề 001



a3
Câu 14. Cho hình chóp đều S .ABCD có cạnh đáy bằng a và thể tích bằng . Tìm góc giữa mặt bên và
6
mặt đáy của hình chóp đã cho.
A. 600 .
B. 1350 .
C. 450 .
D. 300 .
Câu 15. Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh bằng a. Tính thể tích khối chóp D.ABC ′ D′ .
a3
a3
a3
a3
A. .
B. .
C. .
D. .
4
6
3
9

d = 1200 . Gọi
Câu 16. Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a 5 và BAC
K, I lần lượt là trung điểm của cạnh
√ CC1 , BB1 . Tính khoảng
√ cách từ điểm I đến mặt
√ phẳng (A1 BK).


a 15
a 5
a 5
B.
.
C.
.
D.
.
A. a 15.
3
3
6
Câu 17. Kết quả nào đúng?
R
sin3 x
A. sin2 x cos x =
+ C.
3
R
C. sin2 x cos x = −cos2 x. sin x + C.

sin3 x
+ C.
3
R
D. sin2 x cos x = cos2 x. sin x + C.

B.


R

sin2 x cos x = −

Câu 18. Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến trên R?
A. m > 2.
B. m > e2 .
C. m ≥ e−2 .
D. m > 2e .
Câu 19. Cho
mãn a > b > 0. Kết luận
nào sau
đây là sai? √



√5 hai số thực a, bthỏa
√5
a
b
− 3
− 3
A. a < b.
B. e > e .
C. a
D. a 2 > b 2 .
Câu 20. Cho hình lập phương ABCD.A′ B′C ′ D′ . Tính góc giữa hai đường thẳng AC và BC ′ .
A. 450 .

B. 300 .
C. 360 .
D. 600 .
x
trên tập xác định của nó là
Câu 21. Giá trị nhỏ nhất của hàm số y = 2
x +1
1
1
A. min y = − .
B. min y = 0.
D. min y = −1.
C. min y = .
R
R
R
R
2
2
Câu 22. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (−2; 0; 0).
B. (0; −2; 0).
C. (0; 6; 0).
D. (0; 2; 0).
m
R
dx
theo m?
Câu 23. Cho số thực dươngm. Tính I =

2
0 x + 3x + 2
m+1
2m + 2
m+2
m+2
A. I = ln(
).
B. I = ln(
).
C. I = ln(
).
D. I = ln(
).
m+2
m+2
m+1
2m + 2
Câu 24. Tính diện tích S của hình phẳng được giới hạn bởi các đường y = x2 , y = −x
5
1
1
1
A. S = .
B. S = .
C. S = .
D. S = .
6
2
6

3

Câu 25. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hồnh. Tìm
thể tích V của khối trịn xoay tạo thành.
10π
π
A. V = 1.
B. V =
.
C. V = .
D. V = π.
3
3
Câu 26. Nguyên hàm F(x) của hàm số f (x) = 2x2 + x3 − 4 thỏa mãn điều kiện F(0) = 0 là
2
x4
2
x4
− 4x.
B. x3 − x4 + 2x.
C. x3 +
− 4x + 4. D. 2x3 − 4x4 .
A. x3 +
3
4
3
4
Câu 27. Tập xác định của hàm số y = logπ (3 x − 3) là:
A. [1; +∞).
B. (1; +∞).

C. (3; +∞).

D. Đáp án khác.

Câu 28. Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x2 − 4x + 5, tiếp tuyến tại
A(1; 2) và tiếp tuyến tại B(4; 5) của đồ thị (C).
9
7
5
3
A. .
B. .
C. .
D. .
4
4
4
4
Trang 2/6 Mã đề 001


Câu 29. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1;
Độ dài đường cao AH của tứ diện ABCD là:
A. 5 .
B. 7 .
C. 9 .
D. 6.
1 3 2
x −2x +3x+1
Câu 30. Cho hàm số f (x) = e 3

. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 1) và (3; +∞).
B. Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3; +∞).
C. Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3; +∞).
D. Hàm số đồng biến trên khoảng (−∞; 1) và (3; +∞).
Câu 31. Người ta cần cắt một tấm tơn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục
bé bằng 2b (a > b > 0) để được một tấm tơn có dạng hình chữ nhật nội tiếp elíp. Người ta gị tấm tơn
hình chữ nhật thu được thành một hình trụ khơng có đáy như hình bên. Tính thể tích lớn nhất có thể được
của khối trụ thu được.
4a2 b
2a2 b
2a2 b
4a2 b
A. √ .
C. √ .
B. √ .
D. √ .
3 3π
3 3π
3 2π
3 2π
2x − 3
Câu 32. Với giá trị nào của tham số m thì hàm số y =
đạt giá trị lớn nhất trên đoạn [1; 3] bằng
x + m2
1
:
4

A. m = ±3.

B. m = ±2.
C. m = ±1.
D. m = ± 3.
Câu 33. Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước. Người ta thả vào đó một
khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngồi là 18π
(dm3). Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm
trong nước. Tính thể tích nước cịn lại trong bình.
A. 6π(dm3 ).
B. 24π(dm3 ).
C. 54π(dm3 ).
D. 12π(dm3 ).


Câu 34. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình vơ nghiệm.
B. Bất phương trình đúng với mọi x ∈ [ 1; 3].
C. Bất phương trình đúng với mọi x ∈ (4; +∞).
D. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
Câu 35. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 6π.
B. 8π.
C. 10π.
D. 12π.
Câu 36. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh
√ a. Hai mặt phẳng (S AB), (S AC) cùng
2
vng góc
với
mặt

phẳng
(ABC),
diện
tích
tam
giác
S
BC

a
3. Tính thể tích khối



√ chóp S .ABC.
3
3
3
3
a 15
a 15
a 5
a 15
A.
.
B.
.
C.
.
D.

.
8
4
3
16
Câu 37. Cho m = log2 3; n = log5 2. Tính log2 2250 theo m, n.
2mn + n + 3
2mn + n + 2
.
B. log2 2250 =
.
A. log2 2250 =
n
n
2mn + 2n + 3
3mn + n + 4
.
D. log2 2250 =
.
C. log2 2250 =
m
n
Câu 38. Chọn mệnh đề đúng trong các mệnh đề sau:
R3
R2
R3
A. |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx.
B.

1


1

2

R3

R2

R3

|x2 − 2x|dx = (x2 − 2x)dx −

1

C.

R3
1

1

|x − 2x|dx = −
2

(x2 − 2x)dx.

2

R2

1

(x − 2x)dx +
2

R3

(x2 − 2x)dx.

2

Trang 3/6 Mã đề 001


D.

R3
1

R2
R3
|x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx.
1

2

Câu 39. Cho hàm số y = x − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 3.
B. m = 4.

C. m = 1.
D. m = 2.
2

Câu 40. Cho P = 2a 4b 8c , chọn mệnh đề đúng trong các mệnh đề sau.
A. P = 26abc .
B. P = 2a+b+c .
C. P = 2abc .

D. P = 2a+2b+3c .

Câu 41. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC),
√ góc giữa đường thẳng S√B và mp(S AC). Tính giá trị sin α.
√ S A = 2a. Gọi α là số đo
1
15
5
15
.
B.
.
C.
.
D. .
A.
10
3
5
2

Câu 42. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
B. y′ = (1 − sin 3x)5 x+cos3x ln 5 .
C. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5 .
D. y′ = 5 x+cos3x ln 5 .
Câu 43. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 0 thì a x > ay ⇔ x < y.
B. Nếu a < 1 thì a x > ay ⇔ x < y.
x
y
C. Nếu a > 1 thì a > a ⇔ x > y.
D. Nếu a > 0 thì a x = ay ⇔ x = y.
Câu 44. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vng góc với mặt phẳng
(ABC),
√ S A = 2a. Gọi α là số đo
√ góc giữa đường thẳng S B và mp(S AC). Tính giá√trị sin α.
15
5
1
15
A.
.
B.
.
C. .
D.
.
5
3
2

10

Câu 45. Tính đạo hàm của hàm số y = log4 x2 − 1
x
x
1
x
A. y′ = 2
. D. y′ = 2
. B. y′ =
. C. y′ = √
.
2
(x − 1)log4 e
2(x − 1) ln 4
(x − 1) ln 4
x2 − 1 ln 4
Câu 46. Cho P = 2a 4b 8c , chọn mệnh đề đúng trong các mệnh đề sau.
A. P = 2a+b+c .
B. P = 2a+2b+3c .
C. P = 2abc .

D. P = 26abc .

Câu 47. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 3a; cạnh S A vng góc với mặt
phẳng (ABCD), S A = 2a. Tính thể tích khối chóp S .ABCD
A. 6a3 .
B. 12a3 .
C. 4a3 .
D. 3a3 .

3x
Câu 48. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
cắt đường thẳng y = x + m tại
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. m = 1.
B. m = −2.
C. Không tồn tại m.
D. m = 2.
Câu 49. Chọn mệnh đề đúng trong các mệnh đề sau:
R2
R3
R3
A. |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx.
1

1

B.
C.
D.

R3

2

R2


R3

1

1

2

R3

R2

|x2 − 2x|dx = |x2 − 2x|dx −

|x2 − 2x|dx = (x2 − 2x)dx −

|x2 − 2x|dx.

R3

1

1

2

R3

R2


R3

1

2

1

|x2 − 2x|dx = (x2 − 2x)dx +

(x2 − 2x)dx.
(x2 − 2x)dx.

Câu 50. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x = −1; x = 2.
29
25
27
23
A. .
B.
.
C. .
D. .
4
4
4
4
Trang 4/6 Mã đề 001



- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/6 Mã đề 001