Free LATEX
ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu 1. Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến trên R.
A. m > 2.
B. m > e2 .
C. m > 2e .
D. m ≥ e−2 .
Câu 2. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s). Tính
qng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
A. S = 24 (m).
B. S = 28 (m).
C. S = 20 (m).
D. S = 12 (m).
Câu 3. Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 100a3 .
B. 60a3 .
C. 30a3 .
D. 20a3 .
Câu 4. Hàm
√ số nào sau√đây đồng biến trên R?
A. y = x2 + x + 1 − x2 − x + 1.
C. y = tan x.
B. y = x4 + 3x2 + 2.
D. y = x2 .
Câu 5. Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có
tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo
dây cung dài nhất?
A. x = 3 + 2ty = 4 + tz = 6.
B. x = 5 + ty = 5 + 2tz = 2.
C. x = 5 + 2ty = 5 + tz = 2 − 4t.
D. x = 5 + 2ty = 5 + tz = 2.
Câu 6. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y =
3 + 2x
tại
x+1
hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
3
B. ∀m ∈ R .
C. 1 < m , 4.
D. −4 < m < 1.
A. m < .
2
Câu 7. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − 5 = 0. Bán kính R
của (S) bằng
√ bao nhiêu?
√
A. R = 21.
B. R = 29.
C. R = 9.
D. R = 3.
Câu 8. Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
A. y = x3 .
B. y = x3 − 2x2 + 3x + 2.
C. y = −x4 + 3x2 − 2.
D. y = x2 − 2x + 2.
√ x
Câu 9. Tìm nghiệm của phương trình 2 x = ( 3) .
A. x = −1.
B. x = 1.
C. x = 0.
D. x = 2.
Câu 10. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 và đường thẳng y = x.
2
1
1
A. − .
B. .
C. .
D. 1.
6
3
6
Câu 11. Cho tứ diện đều ABCD có cạnh bằng a. Tính diện tích xung quanh của hình trụ có đáy là đường
trịn ngoại
tam giác BCD và √
có chiều cao bằng chiều√cao của tứ diện.
√ tiếp
2
√
π 3.a
2π 2.a2
π 2.a2
.
B.
.
C.
.
D. π 3.a2 .
A.
2
3
3
Câu 12. Cho a, b là hai số thực dương bất kì. Mệnh đề nào dưới đây đúng?
a
ln a
A. ln(ab) = ln a. ln b .
B. ln( ) =
.
b
ln b
C. ln(ab2 ) = ln a + 2 ln b.
D. ln(ab2 ) = ln a + (ln b)2 .
Trang 1/5 Mã đề 001
3
Câu 13. Cho hàm số y =
x
− mx + 5. Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực
trị.
A. 2.
B. 1.
C. 4.
D. 3.
Câu 14. Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục
tung.
1
1
B. m < 0.
C. m < .
D. Không tồn tại m.
A. 0 < m < .
3
3
Câu 15. Đạo hàm của hàm số y = log √2
3x − 1
là:
2
2
6
6