Free LATEX
ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu 1. Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ có cực tiểu mà khơng có
cực đại
A. m ≥ 1.
B. m > 1.
C. m < 1.
D. m ≤ 1.
Câu 2. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
1
A. loga2 x = loga x.
B. aloga x = x.
2
C. loga x2 = 2loga x.
D. loga (x − 2)2 = 2loga (x − 2).
Câu 3. Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
A. y = −x4 + 3x2 − 2.
B. y = x3 .
3
2
C. y = x − 2x + 3x + 2.
D. y = x2 − 2x + 2.
Rm
dx
theo m?
Câu 4. Cho số thực dươngm. Tính I =
2
0 x + 3x + 2
m+2
2m + 2
m+2
m+1
A. I = ln(
).
B. I = ln(
).
C. I = ln(
).
D. I = ln(
).
m+1
m+2
2m + 2
m+2
Câu 5. Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có
tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo
dây cung dài nhất?
A. x = 5 + 2ty = 5 + tz = 2.
B. x = 5 + 2ty = 5 + tz = 2 − 4t.
C. x = 5 + ty = 5 + 2tz = 2.
D. x = 3 + 2ty = 4 + tz = 6.
−u (2; −2; 1), kết luận nào sau đây là đúng?
Câu 6. Trong không gian với hệ tọa độ Oxyz cho →
−u | = 9.
−u | = 1.
−u | = 3
−u | = √3.
D. |→
A. |→
B. |→
C. |→
.
√
x
Câu 7. Đồ thị hàm số y = ( 3 − 1) có dạng nào trong các hình H1, H2, H3, H4 sau đây?
A. (H1).
B. (H4).
C. (H3).
D. (H2) .
Câu 8. Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm
số y = 3x2 + log3 x + m là:
A. S = (−∞; ln3).
B. S = [ -ln3; +∞).
C. S = (−∞; 2).
D. S = [ 0; +∞).
Câu 9. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 và đường thẳng y = x.
1
2
1
A. − .
B. .
C. 1.
D. .
6
6
3
Câu 10. Cho a, b là hai số thực dương, khác 1. Đặt loga b = m, tính theo m giá trị của P = loga2 b −
log √b a3 .
m2 − 3
4m2 − 3
m2 − 12
m2 − 12
A.
.
B.
.
C.
.
D.
.
2m
2m
2m
m
Câu 11. Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh bằng a. Tính thể tích khối chóp D.ABC ′ D′ .
a3
a3
a3
a3
A. .
B. .
C. .
D. .
4
3
6
9
Câu 12. Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3). Tìm tọa độ điểm A là hình chiếu
của M trên mặt phẳng (Oxy).
A. A(1; 0; 3).
B. A(0; 0; 3).
C. A(1; 2; 0).
D. A(0; 2; 3).
Câu 13. Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng?
A. −1.
B. 1.
C. π.
D. 0.
Trang 1/5 Mã đề 001
R
Câu 14. Biết f (u)du = F(u) + C Mệnh đề nào dưới đây đúng?
R
R
1
A. f (2x − 1)dx = 2F(2x − 1) + C.
B. f (2x − 1)dx = F(2x − 1) + C .
2
R
R
C. f (2x − 1)dx = F(2x − 1) + C.
D. f (2x − 1)dx = 2F(x) − 1 + C.
Câu 15. Cho hình phẳng (H) giới hạn bởi các đường y = x2 ; y = 0; x = 2 Tính thể tích V của khối tròn
xoay tạo thành khi quay (H) quanh trục Ox.
8
32π
32
8π
.
B. V = .
C. V =
.
D. V = .
A. V =
3
3
5
5
′
Câu 16. Cho hình trụ có hai đáy là hai đường trịn (O; r) và (O ; r). Một hình nón có đỉnh O và có đáy là
hình trịn (O′ ; r). Mặt xung quanh của hình nón chia khối trụ thành hai phần. Gọi V1 là thể tích của khối
V1
nón, V2 là thể tích của phần cịn lại. Tính tỉ số .
V2
V1
V1 1
V1 1
V1 1
A.
= 1.
B.
= .
C.
= .
D.
= .
V2
V2 3
V2 2
V2 6
Câu 17. Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (2; 3; 1).
B. M ′ (−2; −3; −1).
C. M ′ (2; −3; −1).
D. M ′ (−2; 3; 1).
Câu 18. Số nghiệm của phương trình 9 x + 5.3 x − 6 = 0 là
A. 1.
B. 0.
C. 4.
D. 2.
3
, ((ℵ) có đỉnh thuộc (S ) và đáy
2
là đường trịn nằm hồn tồn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn
nhất.
√
√
√
4 3π
2π
C.
A. 4 3π.
B. √ .
.
D. 2 3π.
3
3
Câu R20. Công thức nào sai?
R
A. R sin x = − cos x + C.
B. R cos x = sin x + C.
C. a x = a x . ln a + C.
D. e x = e x + C.
Câu 19. Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R =
Câu 21. Bất đẳng thức nào sau đây là đúng?
−e
A. 3√
> 2−e .
√
e
π
C. ( 3 − 1) < ( 3 − 1) .
√
√
π
e
B. ( 3 + 1) > ( 3 + 1) .
D. 3π < 2π .
Câu 22. Cho hình chóp đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng b. Thể tích của khối chóp
là:
√ 2
√ 2
3ab
3a b
A. VS .ABC =
.
B. VS .ABC =
.
12
12
q
√
√
a2 b2 − 3a2
a2 3b2 − a2
C. VS .ABC =
.
D. VS .ABC =
.
12
12
Câu 23.√Hình nón có bán kính √
đáy R, đường sinh l thì diện tích xung quanh của nó bằng
2
2
A. 2π l − R .
B. π l2 − R2 .
C. πRl.
D. 2πRl.
Câu 24. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
A. −1 < m < .
B. m ∈ (−1; 2).
C. m ∈ (0; 2).
D. m ≥ 0.
2
Câu 25. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s).
Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động.
A. S = 28 (m).
B. S = 24 (m).
C. S = 20 (m).
D. S = 12 (m).
x2 + 2x
Câu 26. Khoảng cách giữa hai điểm cực trị của đồ thị hàm số y =
là:
x−1
√
√
√
√
A. 2 5.
B. 2 3.
C. 2 15.
D. −2 3.
Trang 2/5 Mã đề 001
x−3
y−6
z−1
=
=
và
−2
2
1
d2 : x = ty = −tz = 2 (t ∈ R). Đường thẳng đi qua điểm A(0; 1; 1), vng góc với d1 và cắt d2 có phương
trình là:
y−1 z−1
x
y−1 z−1
x
=
=
.
B.
=
=
.
A.
−1
−3
4
−1
3
4
x y−1 z−1
x−1
y
z−1
C. =
=
.
D.
=
=
.
1
−3
4
−1
−3
4
Câu 28. Tính thể tích khối trịn xoay khi quay xung quanh trục hồnh hình phẳng giới hạn bởi các đường
1
y = , x = 1, x = 2 và trục hoành.
x
π
π
3π
3π
A. V = .
B. V = .
C. V =
.
D. V =
.
2
3
5
2
3x − 1 3
≤ là:
Câu 29. Tập nghiệm của bất phương trình log4 (3 x − 1).log 1
16
4
4
A. S = (−∞; 1] ∪ [2; +∞) .
B. S = [1; 2].
C. S = (0; 1] ∪ [2; +∞).
D. S = (1; 2) .
Câu 27. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :
Câu 30. Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước. Người ta thả vào đó một
khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 18π
(dm3). Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm
trong nước. Tính thể tích nước cịn lại trong bình.
A. 12π(dm3 ).
B. 24π(dm3 ).
C. 6π(dm3 ).
D. 54π(dm3 ).
Câu 31. Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm
cực đại có hồnh độ nhỏ hơn 1.
A. S = (−1; +∞) .
B. S = (−4; −1).
C. S = (−∞; −4) ∪ (−1; +∞) .
D. S = [−1; +∞) .
Câu 32. Đồ thị như hình bên là đồ thị của hàm số nào?
−2x + 3
2x + 1
2x + 2
.
B. y =
.
C. y =
.
A. y =
x+1
1−x
x+1
Câu 33. Cho log2 b = 3, log2 c = −4. Hãy tính log2 (b2 c)
A. 2.
B. 4.
C. 6.
D. y =
2x − 1
.
x−1
D. 8.
Câu 34. Cho biểu thức P = (ln a + loga e) + ln a − (loga e) , với 0 < a , 1. Chọn mệnh đề đúng.
A. P = 2loga e.
B. P = 1.
C. P = 2 + 2(ln a)2 .
D. P = 2 ln a.
2
2
2
Câu 35. Hàm số y = x4 − 4x2 + 1 đồng biến trên khoảng nào trong các khoảng sau đây.
A. (1; 5).
B. (3; 5).
C. (−1; 1).
D. (−3; 0).
Câu 36. Hình phẳng giới hạn bởi đồ thị hàm y = x2 +1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
1
1
1
1
B.
.
C. .
D. .
A. .
3
12
6
4
3x
Câu 37. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
cắt đường thẳng y = x + m tại
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. m = 1.
B. m = −2.
C. Không tồn tại m.
D. m = 2.
Câu 38. Tính thể tích của khối trịn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2 ,
trục Ox và hai đường thẳng x = −1; x = 2 quay quanh trục Ox.
33π
31π
32π
A.
.
B.
.
C. 6π.
D.
.
5
5
5
Câu 39. Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0. Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2 +MB2 +2MC 2
nhỏ nhất. Tính tổng a + b + c.
Trang 3/5 Mã đề 001
A. 2.
B. 1.
Câu 40. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
C. y′ = 5 x+cos3x ln 5 .
C. 3.
D. 4.
B. y′ = (1 − sin 3x)5 x+cos3x ln 5 .
D. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5 .
Câu 41. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
B. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
C. (x − 1)2 + (y − 2)2 + (z − 4)2 = 3.
D. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
Câu 42. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
4 10 16
7 10 31
5 11 17
2 7 21
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
A. M( ; ; ).
3 3 3
3 3 3
3 3 6
3 3 3
Câu 43. Cho hình√chóp S .ABCD có đáy ABCD là hình vng. Cạnh S A vng góc với mặt phẳng
(ABCD); S A = 2a 3. Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 . Gọi M, N lần lượt là trung
điểm hai cạnh AB, AD. Tính khoảng cách giữa hai đường thẳng MN và S C.
√
√
√
√
3a 6
3a 30
3a 6
a 15
.
B.
.
C.
.
D.
.
A.
8
10
2
2
√
Câu 44. Tính đạo hàm của hàm số y = log4 x2 − 1
1
x
x
x
. B. y′ = √
. C. y′ =
. D. y′ = 2
.
A. y′ = 2
2
(x − 1)log4 e
2(x − 1) ln 4
(x − 1) ln 4
x2 − 1 ln 4
Câu 45. Hàm số y = x3 − 3x2 + 1 có giá trị cực đại là:
A. 1.
B. −3.
C. 4.
D. 2.
3x
Câu 46. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
cắt đường thẳng y = x + m tại
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. m = −2.
B. m = 1.
C. Không tồn tại m.
D. m = 2.
Câu 47. Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC là tam giác tù, AB = AC. Góc tạo bởi hai
đường thẳng AA′ và BC ′ bằng 300 ; khoảng cách giữa AA′ và BC ′ bằng a; góc giữa hai mặt phẳng
(ABB′ A′ ) và (ACC ′ A′ ) bằng 600 . Tính thể tích khối lăng trụ ABC.A′ B′C ′ .
√
√
√
√
A. 9a3 3.
B. 6a3 3.
C. 3a3 3.
D. 4a3 3.
Câu 48. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
−u (2; 3; −5).
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là →
x
=
1
−
2t
x
=
1
+
2t
x
=
1
+
2t
x = −1 + 2t
y = −2 + 3t .
y = −2 + 3t .
y = −2 − 3t .
y = 2 + 3t .
B.
C.
D.
A.
z = 4 + 5t
z = 4 − 5t
z = 4 − 5t
z = −4 − 5t
Câu 49. Cho tứ diện DABC, tam giácABC là vng tại B, DA vng góc với mặt phẳng (ABC). Biết
AB = 3a, BC = 4a, DA = 5a. Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng
√
√
√
√
5a 3
5a 2
5a 2
5a 3
A.
.
B.
.
C.
.
D.
.
3
3
2
2
Câu 50. Trong khơng gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
7 10 31
5 11 17
4 10 16
2 7 21
A. M( ; ; ).
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
3 3 3
3 3 6
3 3 3
3 3 3
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001