TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
x2
Câu 1. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = e, m = 1.
C. M = , m = 0.
D. M = e, m = .
e
e
Câu 2. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 6.
1
Câu 3. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −1.
C. 12.
D. 8.
C. 1.
D. −2.
Câu 4. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và AC = BD = a.
Khoảng√cách từ A đến mặt phẳng√(BCD) bằng
√
√
a 2
a 2
D. 2a 2.
A.
.
B.
.
C. a 2.
2
4
x=t
Câu 5. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
D. (x + 3) + (y + 1) + (z + 3) = .
C. (x − 3) + (y + 1) + (z + 3) = .
4
4
Câu 6. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 7. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 4 mặt.
C. 3 mặt.
D. 6 mặt.
Câu 8. Cho z là nghiệm của phương trình √x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
√
−1 − i 3
−1 + i 3
.
C. P = 2.
D. P =
.
A. P = 2i.
B. P =
2
2
Z 1
Câu 9. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
A. 0.
B. 1.
C.
1
.
4
Câu 10. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. 1.
D.
1
.
2
D. Vô nghiệm.
Trang 1/10 Mã đề 1
Câu 11. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 3.
C. 5.
D. 4.
Câu 12. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ là
√
√ Thể tích khối chóp S 3.ABC
3
a 3
a3 3
a3 2
a 3
.
B.
.
C.
.
D.
.
A.
4
6
12
12
Câu 13. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 0.
C. m > 1.
D. m > −1.
Câu 14. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 15 tháng.
C. 17 tháng.
D. 16 tháng.
Câu 15. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = 0.
2
x − 3x + 3
đạt cực đại tại
Câu 16. Hàm số y =
x−2
A. x = 1.
B. x = 3.
C. x = 2.
D. m = −3.
D. x = 0.
Câu 17. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 18. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.
B. 3.
C. 2.
D. 1.
Câu 19. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.
D. m ≤ 3.
!
!
!
x
4
1
2
2016
Câu 20. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 1008.
C. T = 2017.
D. T =
.
2017
Câu 21. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.1, 03
100.(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
3
(1, 01)3
120.(1, 12)3
C. m =
triệu.
D.
m
=
triệu.
(1, 01)3 − 1
(1, 12)3 − 1
Trang 2/10 Mã đề 1
Câu 22. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 212 triệu.
C. 220 triệu.
D. 216 triệu.
Câu 23. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
B.
.
C.
.
D. a 3.
A. a 2.
2
3
Câu 24. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 25. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.
C. 9.
D. 0.
Câu 26. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 6510 m.
D. 2400 m.
Câu 27. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 12.
C. 4.
D. 10.
Câu 28. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 29. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
12
6
36
Câu 30. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −8.
C. x = 0.
D. x = −2.
Câu 31. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = 1.
C. f 0 (0) = ln 10.
ln 10
D. f 0 (0) = 10.
√
Câu 32. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
√
a3 3
a3 3
a3
3
A.
.
B. a 3.
C.
.
D.
.
3
12
4
Câu 33. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
B. lim un = c (Với un = c là hằng số).
1
1
C. lim k = 0 với k > 1.
D. lim √ = 0.
n
n
1 − 2n
Câu 34. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .
B. .
C. 1.
D. − .
3
3
3
Trang 3/10 Mã đề 1
Câu 35. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√ S H ⊥ (ABCD), S A =
√a 5. Thể tích khối chóp3 S .ABCD là
4a3 3
2a3 3
2a
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
x−3 x−2 x−1
x
Câu 36. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (−∞; 2].
C. [2; +∞).
D. (2; +∞).
Câu 37. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. [1; 2].
C. (1; 2).
Câu 38. Dãy số
!n nào có giới hạn bằng 0?
−2
A. un =
.
B. un = n2 − 4n.
3
!n
6
C. un =
.
5
D. (−∞; +∞).
D. un =
n3 − 3n
.
n+1
x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3].
C. [−3; +∞).
D. (−∞; −3).
Câu 39. [4-1212d] Cho hai hàm số y =
Câu 40. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. 5.
C. −6.
2
D. −5.
Câu 41. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 1.
B. 3.
C. 5.
D. 2.
Câu 42. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tứ giác.
D. Hai khối chóp tam giác.
!
x+1
Câu 43. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
A. 2017.
B.
.
C.
.
D.
.
2018
2017
2018
Câu 44. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Bốn cạnh.
C. Năm cạnh.
D. Hai cạnh.
x2 − 12x + 35
x→5
25 − 5x
2
2
A. +∞.
B. − .
C. .
D. −∞.
5
5
2n + 1
Câu 46. Tính giới hạn lim
3n + 2
3
2
1
A. .
B. .
C. 0.
D. .
2
3
2
Câu 47. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (2; 1; 6).
C. ~u = (3; 4; −4).
D. ~u = (2; 2; −1).
Câu 45. Tính lim
Trang 4/10 Mã đề 1
Câu 48. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ±1.
C. m = ± 3.
D. m = ±3.
Câu 49. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Khơng thay đổi.
C. Tăng lên n lần.
D. Giảm đi n lần.
π π
Câu 50. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 7.
C. 3.
D. 1.
Câu 51. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 5.
C. 7.
D. 0.
Câu 52. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.
B. 2.
1
3|x−1|
C. 4.
= 3m − 2 có nghiệm duy
D. 1.
Câu 53. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2
A. 2.
B. 6.
C. 4.
Câu 54. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
1
A. 5.
B. .
C. 25.
5
3
Z
6
3x + 1
. Tính
1
f (x)dx.
0
D. −1.
√
√
D.
5.
Câu 55. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
1
3
A. .
B. 1.
C. .
D.
.
2
2
2
Câu 56. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. +∞.
C. 2.
D. 1.
! x3 −3mx2 +m
1
Câu 57. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m , 0.
C. m = 0.
D. m ∈ (0; +∞).
un
Câu 58. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. +∞.
C. 1.
D. 0.
x = 1 + 3t
Câu 59. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
1
+
7t
x
=
1
+
3t
x
=
−1
+
2t
x = −1 + 2t
A.
.
B.
C.
y=1+t
y = 1 + 4t .
y = −10 + 11t . D.
y = −10 + 11t .
z = 1 + 5t
z = 1 − 5t
z = −6 − 5t
z = 6 − 5t
Câu 60. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log √2 x.
A. y = log π4 x.
√
C. y = loga x trong đó a = 3 − 2.
D. y = log 14 x.
Trang 5/10 Mã đề 1
Câu 61.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
1
Câu 62. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R \ {1}.
C. D = R.
D. D = (1; +∞).
Câu 63. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−1; 1).
C. (−∞; 1).
D. (1; +∞).
Câu 64. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 24.
C. 20.
D. 15, 36.
4x + 1
bằng?
x→−∞ x + 1
B. 2.
Câu 65. [1] Tính lim
A. −4.
Câu 66. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.
!4x
!2−x
2
3
Câu 67. Tập các số x thỏa mãn
≤
là
3
2
"
!
#
2
2
A. − ; +∞ .
B. −∞; .
3
3
C. 4.
D. −1.
C. 8.
D. 6.
#
2
C. −∞; .
5
!x
1
Câu 68. [2] Tổng các nghiệm của phương trình 31−x = 2 +
là
9
A. − log3 2.
B. log2 3.
C. − log2 3.
"
!
2
D.
; +∞ .
5
D. 1 − log2 3.
Câu 69.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
d = 60◦ . Đường chéo
Câu 70. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
4a3 6
2a3 6
a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 71. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 72. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4e + 2
D. m =
1 − 2e
.
4 − 2e
Trang 6/10 Mã đề 1
Câu 73. [1-c] Giá trị của biểu thức
A. −4.
log7 16
log7 15 − log7
B. −2.
15
30
bằng
C. 2.
D. 4.
Câu 74. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 75. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối lăng trụ tam giác.
C. Khối tứ diện.
D. Khối bát diện đều.
Câu 76. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. (−1) .
B. (− 2) .
Câu 77. Tính lim
x→2
A. 1.
x+2
bằng?
x
B. 0.
√
−1.
−3
C. 0−1 .
D.
C. 2.
D. 3.
Câu 78. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng −∞; .
A. Hàm số đồng biến trên khoảng ; 1 .
3
!3
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng ; 1 .
3
Câu 79. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 10 cạnh.
C. 9 cạnh.
D. 11 cạnh.
Câu 80. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a3 6
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
48
24
8
24
1
Câu 81. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. −3.
B. .
C. 3.
D. − .
3
3
Câu 82. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. −2e2 .
C. 2e2 .
D. 2e4 .
Câu 83. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.
C. D = [2; 1].
2
D. D = R.
Câu 84. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.
√
Câu 85. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a
a 38
3a 58
3a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 86. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
A. un =
.
B.
u
=
.
n
n2
(n + 1)2
C. un =
1 − 2n
.
5n + n2
D. un =
n2 − 2
.
5n − 3n2
Trang 7/10 Mã đề 1
√
Câu 87. Thể tích của khối lập phương
có
cạnh
bằng
a
2
√
3
√
√
2a
2
A. V = a3 2.
B.
.
C. V = 2a3 .
D. 2a3 2.
3
2
Câu 88. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ±1.
B. m = ± 3.
C. m = ± 2.
D. m = ±3.
√
Câu 89. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vô số.
2
x − 5x + 6
Câu 90. Tính giới hạn lim
x→2
x−2
A. −1.
B. 5.
C. 1.
D. 0.
Câu 91. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) liên tục trên K.
B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) xác định trên K.
Câu 92. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 93. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 94. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
23
1728
1637
A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
√
Câu 95. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vô nghiệm.
C. 2 nghiệm.
D. 3 nghiệm.
0 0 0 0
0
Câu 96.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.
.
7
2
3
2
√
Câu 97. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. Vô số.
D. 63.
Câu 98. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.016.000.
D. 102.423.000.
Câu 99. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−1; 3].
C. [−3; 1].
D. (−∞; −3].
Câu 100. Tính lim
x→3
A. −3.
x2 − 9
x−3
B. 3.
Câu 101. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {0}.
C. +∞.
D. 6.
C. D = R.
D. D = R \ {1}.
Câu 102. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vô nghiệm.
C. 1 nghiệm.
D. 2 nghiệm.
Trang 8/10 Mã đề 1
Câu 103.
Z Mệnh!0đề nào sau đây sai?
A.
f (x)dx = f (x).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 104. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {3; 4}.
Câu 105. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
B. − 2 .
C. −e.
A. − .
e
e
√
Câu 106.√ Xác định phần ảo của số phức z = ( 2 + 3i)2 √
A. −6 2.
B. −7.
C. 6 2.
D. {4; 3}.
D. −
1
.
2e
D. 7.
Câu 107. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {2}.
C. {5; 2}.
D. {3}.
Câu 108. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).
Z
Câu 109. Cho I =
B. (I) và (III).
3
x
√
dx =
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 4.
1 − n2
bằng?
Câu 110. [1] Tính lim 2
2n + 1
1
1
A. − .
B. .
2
3
C. (I) và (II).
D. Cả ba mệnh đề.
a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d
d
C. P = 16.
C.
1
.
2
D. P = 28.
D. 0.
π
Câu 111. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 2 3.
B. T = 2.
C. T = 4.
D. T = 3 3 + 1.
Câu 112. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 4 − 2 ln 2.
C. e.
D. 1.
9t
Câu 113. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 1.
C. Vô số.
D. 2.
Câu 114. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 8%.
C. 0, 6%.
D. 0, 7%.
Trang 9/10 Mã đề 1
1
1
1
Câu 115. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
A. .
B. +∞.
C. 2.
2
Câu 116. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 2.
C. 144.
!
D.
5
.
2
D. 4.
Câu 117. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
5
9
23
A.
.
B. − .
C.
.
D. −
.
100
16
25
100
Câu 118. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (III) sai.
C. Câu (I) sai.
D. Câu (II) sai.
sai.
9x
Câu 119. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. 1.
C. 2.
D. −1.
2
Câu 120. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có vơ số.
C. Khơng có.
D. Có một.
Câu 121. Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.
C. |z| = 10.
D. |z| = 17.
A. |z| = 10.
B. |z| = 17.
Câu 122. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a = − loga 2.
log2 a
loga 2
Câu 123. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√
√ là
3
3
3
3
8a 3
a 3
4a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
Câu 124. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 12.
C. ln 14.
D. ln 10.
2
Câu 125. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 3 − log2 3.
C. 1 − log2 3.
D. 2 − log2 3.
3
2
Câu 126. Giá
√ trị cực đại của hàm số√y = x − 3x − 3x + 2 √
A. −3 − 4 2.
B. 3 + 4 2.
C. 3 − 4 2.
√
D. −3 + 4 2.
Câu 127. Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:
√
3
3
3
3
A. .
B.
.
C.
.
D.
.
4
12
4
2
Câu 128. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 1.
C. 2.
D. 3.
Trang 10/10 Mã đề 1
Câu 129. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B.
.
C. 7.
D. .
2
2
Câu 130. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
D. 8, 16, 32.
A. 2, 4, 8.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D
3.
4. A
C
5.
7.
D
2.
1. A
6.
B
B
8.
C
9.
D
10.
C
11.
D
12.
C
13.
D
14.
15.
B
D
16. A
17. A
18.
B
19. A
20.
B
22.
B
21.
23.
C
24.
B
25.
D
D
26.
C
27.
B
28.
B
29.
B
30.
B
31.
C
32. A
34.
33. A
35.
D
36.
37.
D
38. A
39.
41.
D
42.
43.
D
44. A
C
46.
47. A
D
51. A
53.
C
B
57.
D
B
50.
D
52.
D
54.
C
56.
C
60.
61. A
65.
B
D
58.
C
59.
63.
D
48. A
49.
55.
C
40.
B
45.
D
B
C
67. A
1
B
62.
D
64.
D
66.
C
68.
C
70.
69. A
71.
D
74.
75.
C
76.
77.
C
78.
B
80.
81.
D
82. A
83.
D
84. A
D
87.
C
90. A
91.
C
92. A
97.
D
B
C
D
94.
B
C
95.
C
88. A
89.
93.
B
86.
C
85.
C
72.
73. A
79.
D
C
96.
B
98.
B
99.
C
100.
D
101.
C
102.
D
103.
C
104.
C
106.
C
108.
C
D
105.
107. A
109.
B
111.
110. A
C
113.
D
115.
121.
D
C
118. A
120. A
B
C
125.
129.
D
116.
123. A
127.
C
114.
C
117.
119.
112.
D
122.
C
124.
C
126.
D
128.
C
D
130.
2
C
B