Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (498)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.86 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (0; 2).

C. (−∞; 0) và (2; +∞). D. (−∞; 2).

Câu 2. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên đúng. C. Chỉ có (II) đúng.

D. Cả hai câu trên sai.



Câu 3. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 0.

C. 1.

D. 3.

Câu 4. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ√C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
.
B. 3.
A.
C. 1.
D. 2.
3

Câu 5. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.

C. {3; 4}.

D. {3; 3}.

Câu 6. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
trị nhỏ nhất của biểu thức P = "x + 2y! thuộc tập nào dưới "đây?!
5
5
A. [3; 4).
B.
;3 .
C. 2; .
D. (1; 2).
2
2


ab. Giá

Câu 7. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
C. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a


Câu 8. Tính giới hạn lim

x→+∞

A. 1.

2x + 1
x+1
B. −1.

x→a

x→a

D. lim f (x) = f (a).
x→a

C.

1
.
2

D. 2.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+

1
B. xy0 = ey − 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.

Câu 9. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.

Trang 1/10 Mã đề 1


Câu 10. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là


√ Thể tích khối chóp S 3.ABC
3
a 2
a3 3
a3 3
a 3
.
B.
.
C.
.
D.
.
A.

6
12
4
12
Câu 11. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
4
2
8
1
Câu 12. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 13. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 14. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Câu (III) sai.

C. Khơng có câu nào D. Câu (II) sai.
sai.

Câu 15. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 12 năm.
C. 11 năm.
D. 10 năm.
Câu 16. Biểu thức nào sau đây √
khơng có nghĩa
−3
−1
A. 0 .
B.
−1.


C. (− 2)0 .

D. (−1)−1 .


Câu 17. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (II) và (III).

C. (I) và (II).

D. (I) và (III).

Câu 18. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
2
Câu 19. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
A. m = ±1.
B. m = ±3.
C. m = ± 2.
D. m = ± 3.


Trang 2/10 Mã đề 1


2

Câu 20. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
B.
.
C. √ .
A. 3 .
3
e
2e
2 e

D.

1
.
e2

Câu 21. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).

Câu 22. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 25 m.
D. 1587 m.
Câu 23. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 7.

C. 0.

D. 5.

Câu 24. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 − i 3
−1 + i 3
.
B. P =
.
C. P = 2.
D. P = 2i.
A. P =
2
2
x2 − 9

Câu 25. Tính lim
x→3 x − 3
A. −3.
B. +∞.
C. 3.
D. 6.
x−3 x−2 x−1
x
Câu 26. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2].
C. (−∞; 2).
D. [2; +∞).
x−2 x−1
x
x+1
Câu 27. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham

x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−∞; −3).
C. (−3; +∞).
D. [−3; +∞).
Câu 28. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 4.
C. 10.
D. 12.
Câu 29. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.

Câu 30. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. −3.
B. 3.
C. .
D. − .
3
3

3
2
x
Câu 31. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8 √
A. m = ± 3.
B. m = ±3.
C. m = ±1.
D. m = ± 2.
Câu 32. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
Trang 3/10 Mã đề 1


A. 0, 8%.

B. 0, 6%.
C. 0, 5%.
D. 0, 7%.


d = 90 , ABC
d = 30 ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 33. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 3

a3 2
A.
.
B.
.
C.
.
D. 2a2 2.
12
24
24
3
2
Câu 34. Tìm m để hàm số y = mx + 3x + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = 0.
C. m = −3.
D. m = −2.
1 − 2n
Câu 35. [1] Tính lim
bằng?
3n + 1
2
1
2
B. 1.
C. − .
D. .
A. .
3

3
3
Câu 36. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
B. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) có giá trị lớn nhất trên K.
Câu 37. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 20.

C. 12.

D. 8.

8
Câu 38. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 81.
C. 82.
D. 64.
Câu 39. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 1.
C. 3.
2
x − 3x + 3
đạt cực đại tại
Câu 40. Hàm số y =

x−2
A. x = 2.
B. x = 1.
C. x = 3.
Câu 41. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
bằng

A. 5.
B. 5.
C. 25.

D. 5.
D. x = 0.

log √a 5

D.

1
.
5


Câu 42. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3

a 6
a 6
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
18
36
6
6
Z 2
ln(x + 1)
Câu 43. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 1.
C. 0.
D. 3.
Câu 44. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.

B. 7 năm.
C. 8 năm.
D. 9 năm.
x
Câu 45.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A.
.
B. 1.
C. .
D. .
2
2
2
x−1
Câu 46. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng √
AB có độ dài bằng

A. 2.
B. 2 2.
C. 6.
D. 2 3.


Câu 47. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 12.

C. 10.

D. 20.
Trang 4/10 Mã đề 1


Câu 48. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
.
D. 34.
A. 5.
B. 68.
C.
17
Câu 49. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 50. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.

B. −3.
C. −6.
D. 3.
Câu 51. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; −3).
2

Câu 52. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 5.
C. 2.

D. 4.
q
2
Câu 53. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Câu 54. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.
B. 2.

C. 7.
D. 1.
Câu 55. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.

D. 4 mặt.

Câu 56. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 57. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
a3 3
5a3 3
2a3 3
4a 3
.
B.
.
C.

.
D.
.
A.
3
2
3
3
Câu 58. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.
C. 30.
D. 20.
x−2
Câu 59. Tính lim
x→+∞ x + 3
2
A. 1.
B. − .
C. −3.
D. 2.
3
log(mx)
Câu 60. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m < 0 ∨ m > 4.

x+2
Câu 61. Tính lim
bằng?
x→2
x
A. 1.
B. 3.
C. 0.
D. 2.
Câu 62. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 2.
C. −1.

D. 1.

Câu 63. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a =
.
C. log2 a = loga 2.
D. log2 a = − loga 2.
log2 a
loga 2
Trang 5/10 Mã đề 1



Câu 64. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.

D. 5 mặt.

Câu 65. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 66. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Không có.
B. Có một hoặc hai.
C. Có hai.

D. Có một.
Câu 67. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.


2

1

3i lần lượt √l
Câu 68. Phần thực và √
phần ảo của số phức
z
=


A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2 − 1, phần ảo là √
3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
[ = 60◦ , S O
Câu 69. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng



a 57
a 57
2a 57
B.
.
C.
.
D.
.
A. a 57.
19
17
19
Câu 70. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 71.
! định nào sau đây là sai?
Z Các khẳng
0

f (x)dx = f (x).

A.
Z
C.

Z
B.


f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C. D.

Z

Z

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 72. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. β = a β .
B. aαβ = (aα )β .
C. aα bα = (ab)α .
D. aα+β = aα .aβ .
a
Câu 73. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là
√ S H ⊥ (ABCD), S A =


2a3 3
4a3
2a3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 74. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 10.
C. ln 14.
D. ln 4.
1
Câu 75. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 76. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.

5
5
A. m > − .
B. m ≥ 0.
C. − < m < 0.
D. m ≤ 0.
4
4
Z 1
Câu 77. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

A. 1.

B.

1
.
2

C. 0.

D.

1
.
4
Trang 6/10 Mã đề 1



x+1
Câu 78. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 1.
D. 3.
4
3
Câu 79. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 1.
B. 2.
C. .
D.
.
2
2
Câu 80. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
2n − 3
Câu 81. Tính lim 2

bằng
2n + 3n + 1
A. 1.
B. +∞.
C. −∞.
D. 0.
log 2x

Câu 82. [1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
1
0
0
0
A. y0 =
.
B.
y
=
.
C.
y
=
.
D.
y
=

.
2x3 ln 10
x3 ln 10
x3
2x3 ln 10
Câu 83. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 2020.
C. log2 13.
D. 13.
Câu 84. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (2; 2).
C. (−1; −7).
D. (0; −2).

Câu 85. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vô số.
C. 62.
D. 63.
Câu 86. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.

C. m =
.
4e + 2
4 − 2e
4e + 2
Câu 87. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 1.

Câu 88. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 12.

C. 2.

D. m =
1
3|x−1|

1 − 2e
.
4 − 2e

= 3m − 2 có nghiệm duy

D. 3.

C. 10.


D. 8.



x=t




Câu 89. Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2

2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
2n + 1
Câu 90. Tính giới hạn lim
3n + 2
1
2
3
A. .
B. .
C. .
D. 0.
2
3
2
Câu 91. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 9 cạnh.
C. 11 cạnh.
D. 12 cạnh.
Trang 7/10 Mã đề 1


Câu 92.
đề nào sai? Z

Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 93. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.

A. ~u = (2; 2; −1).
B. ~u = (3; 4; −4).
C. ~u = (1; 0; 2).
D. ~u = (2; 1; 6).
!
3n + 2
2
Câu 94. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 3.
C. 5.
D. 4.
12 + 22 + · · · + n2
Câu 95. [3-1133d] Tính lim
n3
1
2
A. .
B. .
3
3

C. +∞.

D. 0.

Câu 96. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?

A. (−1; 1).
B. (−∞; −1).
C. (1; +∞).

D. (−∞; 1).

1
5

Câu 97. [2] Tập xác định của hàm số y = (x − 1) là
A. D = R.
B. D = (−∞; 1).
C. D = (1; +∞).

D. D = R \ {1}.
2

2

sin x
Câu 98. [3-c]
+ 2cos x √
lần lượt là
√ Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x) = 2
A. 2 và 2 2.
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 3.
3


Câu 99. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e3 .
C. e2 .

D. e5 .

Câu 100. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. n2 lần.
D. 3n3 lần.
Câu 101. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
Câu 102. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. 2e2 .
C. −2e2 .
D. −e2 .
Câu 103. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. R.
C. (−∞; 1).

D. (2; +∞).

Câu 104. Trong các khẳng định sau, khẳng định nào sai?

A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 105. Giá trị lớn nhất của hàm số y =
A. 0.

B. 1.

2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
C. −5.
D. −2.
Trang 8/10 Mã đề 1


Câu 106. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng





14 3
20 3
B.
.
C. 6 3.
D.
.
A. 8 3.
3
3
Câu 107. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
.
B. √
.
C. 2
.
D. √
.
A. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2

1
Câu 108. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3, m = 4.
D. m = −3.
5
Câu 109. Tính lim
n+3
A. 1.
B. 3.
C. 0.
D. 2.
Câu 110.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 5.
B. 1.
C. 2.
D. 3.
Câu 111. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
B. 5.
C.
.
D. 7.
A. .

2
2
!2x−1
!2−x
3
3
Câu 112. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. [3; +∞).
C. [1; +∞).
D. (−∞; 1].
Câu 113. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 64cm3 .
C. 84cm3 .
D. 48cm3 .
Câu 114. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. V = 4π.
C. 16π.
D. 32π.
2−n
Câu 115. Giá trị của giới hạn lim
bằng

n+1
A. 1.
B. 0.
C. −1.
D. 2.
Câu 116. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.
C. V = 3.
D. V = 4.
Câu 117. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [1; +∞).
C. (−∞; −3].
D. [−3; 1].
Câu 118. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. .
B. √ .
n
n
2n2 − 1
Câu 119. Tính lim 6
3n + n4
2
A. .
B. 2.

3

C.

sin n
.
n

C. 1.

D.

n+1
.
n

D. 0.
Trang 9/10 Mã đề 1




4n2 + 1 − n + 2
bằng
Câu 120. Tính lim
2n − 3
A. 1.
B. 2.

C. +∞.


D.

2n + 1
Câu 121. Tìm giới hạn lim
n+1
A. 0.
B. 1.

C. 3.

D. 2.

3
.
2

Câu 122. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3
a3 3
.
B.
.
C.
.

D.
.
A.
4
8
12
4
x2
Câu 123. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
C. M = e, m = 0.
D. M = e, m = .
A. M = e, m = 1.
B. M = , m = 0.
e
e
x x
0
Câu 124. [2] Cho hàm số f (x) = 2 .5 . Giá trị của f (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) =
.
C. f 0 (0) = 10.
D. f 0 (0) = 1.
ln 10
Câu 125. [4-1245d] Trong tất cả các số phức z thỏa mãn√hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.

A. 2.
B. 1.
C. 2.
D. 10.
6
. Tính
Câu 126. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
3x + 1
Z 1
f (x)dx.
0

A. −1.

B. 6.

Câu 127. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. +∞.

C. 2.

D. 4.

C. 1.

D. 3.

Câu 128. Cho hàm số y = x3 − 2x2 + x + 1.! Mệnh đề nào dưới đây đúng?

!
1
1
B. Hàm số nghịch biến trên khoảng −∞; .
A. Hàm số nghịch biến trên khoảng ; 1 .
3
! 3
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng ; 1 .
3
Câu 129. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 1.
C. 22016 .
D. e2016 .
Câu 130. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Ba cạnh.
C. Hai cạnh.

D. Bốn cạnh.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

C

3. A

4.

5. A

6.

7.

D

B
D
B

8.

D

9.


B

10.

D

11.

B

12.

D

13. A
15.

C

14.
16. A

B

17.

18. A

C


19. A

20.

21. A

22.

23. A

24.

25.

D

27. A

D
B
C

26.

D

28.

D


29.

D

30.

31.

D

32.

D
D

C

33.

C

34.

35.

C

36.

B


37.

C

38.

B

40.

B

39. A
41.

42. A

C

43. A

44.

D
D

45.

B


46.

47.

B

48.

49. A

50.

51. A

52.

53.
56.

C
B

58.
60.

B
D

54.


B

57.

B

59. A

C

61.

B

62. A

63.

64.

B

65.

66.

B

67.


68.

C

D

69.
1

D
B
C
B
D


70.

D

73.

72. A
C

74.

C


71.
B

75. A

76. A

77.

B

78. A

79.

B

80.
82.

81.

C
B
D

84.
86. A
90.


83.

C

85.

C

87.
D

88.

D

B
C

89.

B

91. A

92.

D

93.


94.

D

95. A

96. A

C

97.

98.

B

99.

100.

B

101.

102.

D

103. A


104.

D

105. A

C
D
C

D

106.

C

107.

108.

C

109.

110.

C

111. A


112.

C

113.

115.

C

116.

D
D

117.

D

118.

119.

D

120. A

121.

D


122.

123.
125.

C
B

B

124. A

C

126.

B

127. A

128. A

129. A

130.

2

D

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×