Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (498)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.94 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −2.
C. x = 0.

D. x = −5.

Câu 2. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều rộng
bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 3. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
C. .
D. .
A. 4.
B. .
4


2
8
3
2
x
Câu 4. [2] Tìm m để giá trị nhỏ nhất √
của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 2 √
A. m = ±1.
B. m = ± 3.
C. m = ±3.
D. m = ± 2.
1
Câu 5. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m−2 có nghiệm duy nhất?
3
A. 1.
B. 2.
C. 4.
D. 3.
Câu 6. Khối lập phương thuộc loại
A. {3; 4}.
B. {4; 3}.

C. {5; 3}.

D. {3; 3}.

Câu 7. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.




5 13
.
B. 2 13.
C. 2.
D. 26.
A.
13
Câu 8. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log π4 x.
B. y = log √2 x.

C. y = log 14 x.
D. y = loga x trong đó a = 3 − 2.
Câu 9. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 4.

C. 1.

Câu 10. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = S h.

C. V = 3S h.
2
Câu 11. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
n+1
A.
.
B. .
C.
.
n
n
n

D. 3.
1
D. V = S h.
3
1
D. √ .
n

Câu 12. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng −∞; .
3

! 3
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng ; 1 .
3
Trang 1/11 Mã đề 1


12 + 22 + · · · + n2
Câu 13. [3-1133d] Tính lim
n3
1
A. .
B. +∞.
3

C. 0.

D.

2
.
3

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0 ∨ m = 4.


Câu 14. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0.

B. m < 0 ∨ m > 4.

5
Câu 15. Tính lim
n+3
A. 0.

B. 1.
C. 3.
D.

x2 + 3x + 5
Câu 16. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. .
C. 1.
D.
A. − .
4
4
7n2 − 2n3 + 1
Câu 17. Tính lim 3
3n + 2n2 + 1
2

A. 0.
B. - .
C. 1.
D.
3
Câu 18. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D.

2.

0.

7
.
3
4 đỉnh, 6 cạnh, 4 mặt.

Câu 19. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là

3
3
3
3
8a 3
a 3
4a 3
8a 3

.
B.
.
C.
.
D.
.
A.
9
3
9
9
Câu 20. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 2.
C. 3.
D. 0.
Câu 21. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là −4.
Câu 22. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.

B. a3 .
C.
.
D.
.
24
12
6
Câu 23.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.

A.
Z
C.

xα dx =

xα+1
+ C, C là hằng số.
α+1

dx = x + C, C là hằng số.

B.
Z
D.

1
dx = ln |x| + C, C là hằng số.

x

Câu 24. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 25. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
1
9
2
A. .
B.
.
C.
.
D. .
5
10
10
5
Câu 26. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Thập nhị diện đều. C. Nhị thập diện đều. D. Tứ diện đều.
Trang 2/11 Mã đề 1


1 − xy

= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
18 11 − 29
9 11 + 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9
21
9
3
!x
1
1−x
Câu 28. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log2 3.
B. 1 − log2 3.
C. − log3 2.
D. log2 3.


Câu 27. [12210d] Xét các số thực dương x, y thỏa mãn log3

Câu 29. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 30. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là 1.
Câu 31. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 21.
C. P = −21.
D. P = 10.
Câu 32. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 5.
x2 +x−2

Câu 33. [1] Tập xác định của hàm số y = 4
A. D = R.
B. D = R \ {1; 2}.

C. 7.


D. 0.

C. D = (−2; 1).

D. D = [2; 1].



Câu 34. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
B.
.
C. 68.
D. 5.
A. 34.
17

Câu 35. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3

a 3
a3 3
a3

A.
.
B.
.
C.
.
D. a3 3.
3
12
4
0 0 0
d = 60◦ . Đường chéo
Câu 36. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0




3
3
3

4a
6
2a
6
a
6
A. a3 6.
B.

.
C.
.
D.
.
3
3
3
Câu 37. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
a 3
2a 3
A.
.
B.
.
C. a 3.
D.
.
2
3
2
Câu 38.
Z Các khẳng định
Z nào sau đây là sai?
Z

Z
A.
Z
C.

k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).

Câu 39. Tính lim
x→2
A. 3.

x+2
bằng?
x
B. 1.

f (x)dx = F(x) +C ⇒

B.
Z
D.

C. 2.

f (x)dx = F(x) + C ⇒

f (u)dx = F(u) +C.


Z

f (t)dt = F(t) + C.

D. 0.
Trang 3/11 Mã đề 1


Câu 40. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Chỉ có (II) đúng.

C. Cả hai câu trên đúng. D. Cả hai câu trên sai.

Câu 41. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √


3
3
a 6
a3 6
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
24
48
8
24
Câu 42. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
Z 3
x
a
a
Câu 43. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá


d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 4.
C. P = 16.
D. P = −2.
Câu 44. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 3.
C. 7.
D. 2.
Câu 45. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 10.
C. 3.
D. 27.
a
1
Câu 46. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 7.
C. 4.
D. 1.
x−3
Câu 47. [1] Tính lim

bằng?
x→3 x + 3
A. 0.
B. +∞.
C. −∞.
D. 1.
Z 2
ln(x + 1)
Câu 48. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. 1.
C. 0.
D. −3.
Câu 49. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. log2 13.
C. 13.
D. 2020.
Câu 50. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 51. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).

D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 52. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. −1.

B. 6.

C. 2.

3

Z

6
3x + 1

. Tính

1

f (x)dx.
0

D. 4.
Trang 4/11 Mã đề 1


Câu 53. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

x→+∞
f (x) a
A. lim [ f (x) − g(x)] = a − b.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

Câu 54. [3-12211d] Số nghiệm của phương trình 12.3 + 3.15 x − 5 x = 20 là
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
x

Câu 55. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 56.
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
k f (x)dx = f


A.
Z
C.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Câu 57. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

f (x)g(x)dx =

B.
Z
D.

f (x)dx g(x)dx.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

C. Khối bát diện đều.

D. Khối 12 mặt đều.


Câu 58. [1] Đạo hàm của hàm số y = 2 x là

1
1
.
D. y0 = x
.
ln 2
2 . ln x
Câu 59. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3
x−2 y+2 z−3
=
=
.

B. =
=
.
A.
2
2
2
2
3
−1
x−2 y−2 z−3
x y z−1
C.
=
=
.
D. = =
.
2
3
4
1 1
1
x+2
Câu 60. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 2.

C. 3.
D. 1.
A. y0 = 2 x . ln x.

B. y0 = 2 x . ln 2.

Câu 61. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 12.

C. y0 =

C. 8.

D. 6.

1
Câu 62. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 63. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 + i 3
−1 − i 3
A. P = 2.
B. P =
.

C. P = 2i.
D. P =
.
2
2
Câu 64. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ min |z − 1 − i|.
√ thức |z − 1 + 3i| = 3. Tìm
A. 2.
B. 1.
C. 10.
D. 2.
Câu 65. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −2.

B. −4.

Câu 66. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim qn = 0 (|q| > 1).

C. −7.

D.

67
.
27


1
= 0.
nk
D. lim un = c (un = c là hằng số).

B. lim

Trang 5/11 Mã đề 1


1
Câu 67. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 68.√Thể tích của tứ diện đều √
cạnh bằng a

a3 2
a3 2
a3 2
A.
.
B.
.
C.
.

4
6
2
!
1
1
1
Câu 69. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
A. +∞.
B. .
C. 2.
2


a3 2
D.
.
12

D.

5
.
2

Câu 70. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu

không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.016.000.
C. 102.016.000.
D. 102.424.000.
Câu 71. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 5
a3 15
a3
a3 15
.
B.
.
C.
.
D.
.
A.
25
25
5
3
Câu 72. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Ba mặt.
C. Năm mặt.

Câu 73. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
C. f 0 (0) = 1.
A. f 0 (0) = ln 10.
B. f 0 (0) =
ln 10

D. Bốn mặt.
D. f 0 (0) = 10.

ln2 x
m
Câu 74. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 32.
C. S = 135.
D. S = 22.
Câu 75. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1728
23
1079
.
B.

.
C.
.
D.
.
A.
4913
4913
4913
68
x−1
Câu 76. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng √
AB có độ dài bằng

A. 2.
B. 2 2.
C. 6.
D. 2 3.
Câu 77. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2

A. a 2.
B. a 3.
C.
.
D.
.
2
3
Câu 78. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
1 − 2n
A. un =
.
B. un =
.
2
5n − 3n
5n + n2
Câu 79. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 30.

C. un =

C. 20.

n2 + n + 1
.
(n + 1)2


D. un =

n2 − 3n
.
n2

D. 12.
Trang 6/11 Mã đề 1


Câu 80. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

α+β
α β
αβ
α β
D. aα bα = (ab)α .
A. a = a .a .
B. a = (a ) .
C. β = a β .
a
1
Câu 81. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. 1.
C. −2.
D. −1.
Câu 82. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

A. 6 mặt.
B. 7 mặt.
C. 9 mặt.
D. 8 mặt.
1
Câu 83. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3, m = 4.
C. m = −3.
D. −3 ≤ m ≤ 4.
Câu 84. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. Không tồn tại.
C. 0.

D. 13.

Câu 85. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
!2x−1
!2−x
3
3



Câu 86. Tập các số x thỏa mãn
5
5
A. [1; +∞).
B. [3; +∞).
C. (−∞; 1].

D. (+∞; −∞).

Câu 87. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 2
a 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
16

24
48
48


4n2 + 1 − n + 2
Câu 88. Tính lim
bằng
2n − 3
3
A. 2.
B. +∞.
C. 1.
D. .
2
Câu 89. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. a.
C. .
D.
.
3
2
2
Câu 90. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,

lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 220 triệu.
C. 210 triệu.
D. 216 triệu.
1
Câu 91. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.
3
2
Câu 92. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. 3 + 4 2.
B. −3 + 4 2.
C. −3 − 4 2.



D. 3 − 4 2.

Câu 93. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Bốn cạnh.
C. Hai cạnh.

D. Ba cạnh.

Câu 94. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. [−1; 2).
C. [1; 2].

D. (1; 2).
Trang 7/11 Mã đề 1


Câu 95. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

A. 8 2.
B. 7 3.
C. 16.
D. 8 3.
d = 300 .
Câu 96. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC

0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.


3a3 3
a3 3
3
3
A. V =
.
B. V = 3a 3.
C. V = 6a .
D. V =
.
2
2
Câu 97. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3
a3 3
3
.
C.
.
D.
.

A. a .
B.
2
3
6
Câu 98. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. 1.
B. 2.
C.
.
D. .
2
2
1 − 2n
Câu 99. [1] Tính lim
bằng?
3n + 1
2
1
2
B. − .
C. 1.
D. .
A. .
3
3
3
Câu 100. Khối đa diện đều loại {3; 5} có số mặt

A. 8.
B. 30.
C. 12.
D. 20.
2n + 1
Câu 101. Tính giới hạn lim
3n + 2
2
3
1
B. .
C. .
D. 0.
A. .
2
3
2

Câu 102. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5
C. (1; 2).
D.
;3 .
A. [3; 4).
B. 2; .
2

2
Câu 103. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
A. √
.
B. 2
.
C.
.
D.
.


a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 104. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 25 triệu đồng.


Câu 105. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 62.
C. 64.
D. 63.
Câu 106. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC

√ với đáy và S C = a 3. 3Thể
√là
3
3
a 3
2a 6
a 3
a3 6
A.
.
B.
.
C.
.
D.
.
4
9

2
12
1
Câu 107. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey − 1.
B. xy0 = ey − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Trang 8/11 Mã đề 1


Câu 108. Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
A. .
B.
.
C.
.
4
2
12



3
D.
.
4

Câu 109. Trong khơng gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
B. .
C. 1.
D. 3.
A. .
2
2
Câu 110. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
13
5
23
A.
.
B.
.
C. − .
D. −
.
25
100

16
100
Câu 111. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Không có.
B. Có một.
C. Có hai.
D. Có một hoặc hai.
Câu 112. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 1.

C. 2.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 4.

Câu 113.
√ [4-1246d] Trong tất cả
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
B. 3.
C. 2.
D. 1.
A. 5.

2

Câu 114. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 3.
C. 4.

D. 5.

Câu 115. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R \ {0}.

D. D = (0; +∞).

C. D = R.

Câu 116. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 2.
C. 1.

D. 5.

Câu 117. Tính thể tích khối lập phương biết tổng diện tích√tất cả các mặt bằng 18.
A. 8.
B. 27.
C. 3 3.
D. 9.
Câu 118. [1] Tập

! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; − .
; +∞ .
B. − ; +∞ .
C.
2
2
2

!
1
D. −∞; .
2

Câu 119. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là

3
3
3
4a
2a
4a 3
2a3 3
A.

.
B.
.
C.
.
D.
.
3
3
3
3
Z 1
Câu 120. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4

0

B.

1
.
2

Câu 121. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.


C. 1.

D. 0.

C. {4; 3}.

D. {5; 3}.

Câu 122. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Trang 9/11 Mã đề 1


3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a 2
a
a
B.
.
C.
.

D. .
A. .
4
3
3
3
!
!
!
x
4
1
2
2016
Câu 124. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 2017.
C. T =
.
D. T = 1008.
2017
Câu 125. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC

thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tam giác.
D. Hai hình chóp tứ giác.
Câu 123. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 126. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
2

Câu 127. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 5.
C. 6.
D. 8.
1
ln x p 2
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 128. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1
1
8
8
B. .

C. .
D. .
A. .
9
3
9
3
2
Câu 129. Tổng diện tích các mặt của một khối lập phương bằng 54cm .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 64cm3 .
C. 46cm3 .
D. 27cm3 .
[ = 60◦ , S O
Câu 130. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng


a 57
a 57
2a 57
A.
.
B.
.
C. a 57.
D.

.
19
17
19
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.

2.

B

4. A

B

5. A

6.

B

7. A


8.

B

9.

10.

D

11.

D

12. A

C

13. A

14.

15. A

16. A

D

18.


D

19. A

20.

D

21. A

22.

17.

B

23.

C

24. A

25.

C

26.

27.


D

28. A

29.

D

30. A

31.

34.

35. A

36. A
B

39.

38.
C

41.
43.

B
C

B

44.

D

B

D
B
D

54. A

B
D

56.

B

58.

B

60.

B

62.


C

63. A

64.

65. A

66.

67.

B

52.

C

59.
61.

D

50.

55. A
57.

C


48.

51.
53.

B

42.
46.

47. A
49.

B

40.
D

45.

B

32. A

C

33. A
37.


C

68.

C
1

D
B
C
D


70.

C

69.

D

71. A

72.

B

73. A

74.


B

75.
77.
79.

78.

C
B

81.
83.

76.

B

C
B

85. A

B

80.

C


82.

C

84.

C

86. A

87.
89.

D

C

88.

B

90. A

91.

D

92.

93.


D

94. A

95.

C
B

96. A

C

97.

B

98.

99.

B

100.

D

101.


B

102.

D

103.

104.

C

B

B

105.

B

106.

D

107.

B

108.


D

110.

D

109. A
111.

D

112.

B

113.

C

114.

115.

C

116.

B

117.


C

118.

B

120.

B

119. A

C

121.

B

122.

D

123.

B

124.

D


125.

126.

C

127. A
129.

B

128. A
D

130.

2

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×