Tải bản đầy đủ (.pdf) (5 trang)

Đề luyện thi thpt môn toán (667)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (126.87 KB, 5 trang )

Free LATEX

ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001

Câu 1. Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
A. y = x3 − 2x2 + 3x + 2.
B. y = x2 − 2x + 2.
4
2
C. y = −x + 3x − 2.
D. y = x3 .
Câu 2. Kết quả nào đúng?
R
A. sin2 x cos x = −cos2 x. sin x + C.
R
sin3 x
+ C.
C. sin2 x cos x = −
3
Câu R3. Công thức nào sai?
A. R e x = e x + C.
C. sin x = − cos x + C.

sin3 x
+ C.
3


B.

R

sin2 x cos x =

D.

R

sin2 x cos x = cos2 x. sin x + C.

R
B. R cos x = sin x + C.
D. a x = a x . ln a + C.

Câu 4. Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A. Đường hypebol.
B. Đường tròn.
C. Đường parabol.
D. Đường elip.
Câu 5. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (0; −2; 0).
B. (0; 2; 0).
C. (−2; 0; 0).
D. (0; 6; 0).
Câu 6. Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (−2; −3; −1).

B. M ′ (2; 3; 1).
C. M ′ (2; −3; −1).
D. M ′ (−2; 3; 1).
Câu 7. Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có
tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo
dây cung dài nhất?
A. x = 3 + 2ty = 4 + tz = 6.
B. x = 5 + 2ty = 5 + tz = 2.
C. x = 5 + 2ty = 5 + tz = 2 − 4t.
D. x = 5 + ty = 5 + 2tz = 2.
Câu 8. Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến trên R.
A. m ≥ e−2 .
B. m > 2.
C. m > e2 .
D. m > 2e .
Câu 9. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − 1 = 0. Viết phương trình
mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P).
A. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3.
B. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3.
1
1
D. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = .
C. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = .
3
3
2
Câu 10. Cho hình phẳng (H) giới hạn bởi các đường y = x ; y = 0; x = 2 Tính thể tích V của khối tròn
xoay tạo thành khi quay (H) quanh trục Ox.
8


32
32π
A. V = .
B. V =
.
C. V = .
D. V =
.
3
3
5
5
Câu 11. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4). Tìm tọa độ trung
điểm I của đoạn thẳng AB.
A. I(0; 1; −2).
B. I(1; 1; 2).
C. I(0; −1; 2).
D. I(0; 1; 2).
2x + 2017
(1). Mệnh đề nào dưới đây là đúng?
Câu 12. Cho hàm số y =






x

+ 1




A. Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y = 2 và không có tiệm cận đứng.
Trang 1/5 Mã đề 001


B. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = −1..
C. Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x = −1, x = 1..
D. Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và khơng có tiệm cận
đứng.
√ sin 2x
Câu 13.
Giá
trị
lớn
nhất
của
hàm
số
y
=
(
π)
trên R bằng?

B. 1.
C. π.
D. 0.

A. π.
Câu 14. Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20.
A. yCD = −2.
B. yCD = 52.
C. yCD = 36.

D. yCD = 4.

Câu 15. Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − 1 = 0 và mặt phẳng
(P) : x + y − 3z + m − 1 = 0. Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường trịn có bán kính
lớn nhất.
A. m = 9.
B. m = 7.
C. m = −7.
D. m = 5.
Câu 16. Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông
với cạnh huyền bằng 2a. Tính thể√tích của khối nón.

4π 2.a3
π.a3
π 2.a3
2π.a3
.
B.
.
C.
.
D.
.
A.

3
3
3
3
Câu 17. Cho hai số phức z1 = 1 + i và z2 = 2 − 3i. Tính mơ-đun của

√ số phức z1 + z2 .
A. |z1 + z2 | = 1.
B. |z1 + z2 | = 5.
C. |z1 + z2 | = 13.
D. |z1 + z2 | = 5.
Câu 18. Với mọi số phức z, ta có |z + 1|2 bằng
A. z2 + 2z + 1.
B. z + z + 1.

C. z · z + z + z + 1.

D. |z|2 + 2|z| + 1.

Câu 19. Cho P = 1 + i + i2 + i3 + · · · + i2017 . Đâu là phương án chính xác?
A. P = 1.
B. P = 0.
C. P = 2i.
D. P = 1 + i.
Câu 20. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 1.

B. 4.
C. 2.
D. 3.
2
4(−3 + i) (3 − i)
+
. Mô-đun của số phức w = z − iz + 1 là
Câu 21. Cho số phức z thỏa mãn z =
−i
√ 1 − 2i



A. |w| = 6 3.
B. |w| = 85.
C. |w| = 4 5.
D. |w| = 48.
Câu 22. Số phức z =
A. 0.

(1 + i)2017
có phần thực hơn phần ảo bao nhiêu đơn vị?
21008 i
B. 21008 .
C. 1.
D. 2.

Câu 23. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 2ki.
B. A = 2k.

C. A = 1.
D. A = 0.
Câu 24. Phần thực của số phức z = 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 là
A. −21008 .
B. −22016 .
C. 21008 .
D. −21008 + 1.
Câu 25. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. −3.
B. 3.
C. −7.
D. 7.
Câu 26. Cho một hình trụ (T ) có chiều cao và bán kính đều bằng 3a Một hình vng ABCD có hai cạnh
AB, CD lần lượt là hai dây cung của hai đường tròn đáy, cạnh AD, BC khơng phải là đường sinh của
hình trụ (T ). Tính cạnh của hình vng này.


3a 10
A. 3a.
B. 6a.
C. 3a 5.
D.
.
2
Trang 2/5 Mã đề 001


Câu 27. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1;
Độ dài đường cao AH của tứ diện ABCD là:

A. 7 .
B. 6.
C. 9 .
D. 5 .
Câu 28. Đồ thị như hình bên là đồ thị của hàm số nào?
2x − 1
2x + 1
2x + 2
A. y =
.
B. y =
.
C. y =
.
x−1
x+1
x+1

x− x+2
Câu 29. Đồ thị của hàm số y =
có tất cả bao nhiêu tiệm cận?
x2 − 4
A. 2.
B. 0.
C. 1.

D. y =

−2x + 3
.

1−x

D. 3.

Câu 30. Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 . Khi t = 0 thì vận tốc của vật là 30 (m/s).
Quãng đường vật đó đi được sau 2 giây gần với giá trị nào nhất sau đây?
A. 50m.
B. 49m.
C. 48m.
D. 47m.

Câu 31. Cho hình chóp tứ giác S .ABCD có đáy là hình vng cạnh bằng a 2, tam giác S AB vuông cân
tại S và mặt phẳng (S AB) vng√góc với mặt phẳng đáy. √
Khoảng cách từ A đến mặt
√ phẳng (S CD) là

a 2
a 6
a 10
A. a 2.
B.
.
C.
.
D.
.
2
3
5


Câu 32. Cho hình chóp S .ABC có S A⊥(ABC), S A = a 3. Tam giác ABC vuông cân tại B, AC = 2a.
Thể tích √
khối chóp S .ABC là √

3

a3 3
a3 3
2a 3
3
.
B.
.
C. a 3 .
D.
.
A.
3
3
6
y−6
z−1
x−3
=
=

Câu 33. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :
−2
2
1

d2 : x = ty = −tz = 2 (t ∈ R). Đường thẳng đi qua điểm A(0; 1; 1), vng góc với d1 và cắt d2 có phương
trình là:
y−1 z−1
x−1
y
z−1
x
=
=
.
B.
=
=
.
A.
−1
−3
4
−1
−3
4
x y−1 z−1
x
y−1 z−1
C. =
=
.
D.
=
=

.
1
−3
4
−1
3
4
1 + z + z2
Câu 34. Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn
là số thực.
1 − z + z2
Khi đó mệnh đề nào sau đây đúng?
3
5
7
1
3
5
A. < |z| < 2.
B. < |z| < .
C. < |z| < .
D. 2 < |z| < .
2
2
2
2
2
2
2
Câu 35. Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1 + z2 | + |z1 − z2 |2

A. 18.
B. 8.
C. 4.
D. 9.
Câu 36. Giả sử z1 , z2 , . . . , z2016 là 2016 nghiệm phức phân biệt của phương trình z2016 +z2015 +· · ·+z+1 = 0
2017
Tính giá trị của biểu thức P = z2017
+ z2017
+ · · · + z2017
1
2
2015 + z2016
A. P = 1.
B. P = 2016.
C. P = 0.
D. P = −2016.
Câu 37. Cho z1 , z2 , z3 là các số phức thỏa mãn |z1 | = |z2 | = |z3 | = 1. Khẳng định nào sau đây đúng?
A. |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 |.
B. |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 |.
C. |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 |.
D. |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 |.
Câu 38. (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω =
phức ω là điểm nào?
A. điểm Q.

1
là một trong bốn điểm P, Q, R, S . Hỏi điểm biểu diễn số
z


B. điểm R.

C. điểm S .

D. điểm P.

4
= 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến
|z|
điểm biểu diễn số phức thuộc tập hợp nào sau đây?

Câu 39. Cho số phức z thỏa mãn (3 − 4i)z −

Trang 3/5 Mã đề 001


!
9
A. ; +∞ .
4

!
1 9
B. ; .
2 4



Câu 40. Cho số phức z thỏa mãn



z +
A. 5.

!
1 5
C. ; .
4 4

!
1
D. 0; .
4



1



= 3. Tổng giá trị lớn nhất và nhỏ nhất của |z| là
z



C. 5.
D. 13.

B. 3.


Câu 41. Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2. Tìm giá trị lớn nhất của biểu thức
S = a√+ 2b.



A. 15.
B. 5.
C. 2 5.
D. 10.

2
và điểm A trong hình vẽ bên là điểm
Câu 42. (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
2
biểu diễn z.
Biết rằng điểm biểu diễn số phức ω =
số phức ω là
A. điểm M.

1
là một trong bốn điểm M, N, P, Q. Khi đó điểm biểu diễn
iz

B. điểm Q.

C. điểm N.

D. điểm P.

Câu 43. Chọn mệnh đề đúng trong các mệnh đề sau:

R3
R2
R3
A. |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx.
1

B.
C.
D.

R3

1

2

R2

|x2 − 2x|dx = (x2 − 2x)dx −

R3

1

1

2

R3


R2

R3

|x2 − 2x|dx = (x2 − 2x)dx +

1

1

2

R3

R2

R3

1

2

1

|x2 − 2x|dx = |x2 − 2x|dx −

(x2 − 2x)dx.
(x2 − 2x)dx.

|x2 − 2x|dx.


Câu 44. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
2 7 21
4 10 16
7 10 31
5 11 17
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
A. M( ; ; ).
3 3 3
3 3 3
3 3 3
3 3 6
Câu 45. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh
√ a. Hai mặt phẳng (S AB), (S AC) cùng
2
vng góc
với
mặt
phẳng
(ABC),
diện
tích
tam
giác
S
BC


a
3. Tính thể tích khối



√ chóp S .ABC.
3
3
3
3
a 15
a 5
a 15
a 15
A.
.
B.
.
C.
.
D.
.
4
3
16
8
Câu 46. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm
−n (2; 1; −4).
A(1; 2; 3) và có một véc tơ pháp tuyến là →
A. 2x + y − 4z + 5 = 0.

B. 2x + y − 4z + 1 = 0.
C. −2x − y + 4z − 8 = 0.
D. 2x + y − 4z + 7 = 0.
Câu 47. Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình √
nón đỉnh S và đáy là hình√trịn nội tiếp tứ giác ABCD
√ bằng

2
2
2
πa 17
πa 15
πa 17
πa2 17
A.
.
B.
.
C.
.
D.
.
8
4
6
4
Câu 48. Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;

AA′ =√2a. Gọi α là số đo góc giữa

√ hai đường thẳng AC và DB . Tính giá trị cos α.√
5
3
1
3
A.
.
B.
.
C. .
D.
.
5
2
2
4
Câu 49. Hàm số y = x4 − 4x2 + 1 đồng biến trên khoảng nào trong các khoảng sau đây.
A. (−3; 0).
B. (−1; 1).
C. (3; 5).
D. (1; 5).
Trang 4/5 Mã đề 001


Câu 50. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 0 thì a x > ay ⇔ x < y.
B. Nếu a > 1 thì a x > ay ⇔ x > y.
x
y
C. Nếu a < 1 thì a > a ⇔ x < y.

D. Nếu a > 0 thì a x = ay ⇔ x = y.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001


×