Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (707)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.41 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.

D. Cả hai câu trên đúng.

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y




18 11 − 29
9 11 − 19
C. Pmin =
. D. Pmin =
.
21
9

Câu 2. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x√+ y.

2 11 − 3
9 11 + 19
A. Pmin =
.
B. Pmin =
.
3
9
Câu 3. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 6.
Câu 4. [2] Tổng các nghiệm của phương trình 3
A. 4.
B. 5.

C. 10.


D. 4.

x2 −4x+5

= 9 là
C. 2.

D. 3.

Câu 5. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = −10.
C. P = 10.
D. P = 21.
Câu 6. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. Khối bát diện đều.

Câu 7. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
A.
.
B. 1.
C. 2.
2

D. Khối 12 mặt đều.


D.

1
.
2

D.

1
.
e2

2

Câu 8. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. √ .
B. 3 .
C. 3 .
e
2e
2 e

3a
, hình chiếu vng góc
2
của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt √
phẳng (S BD) bằng

a
a
2a
a 2
A. .
B. .
C.
.
D.
.
4
3
3
3
! x3 −3mx2 +m
1
Câu 10. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m ∈ R.
C. m = 0.
D. m , 0.
Câu 9. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 11. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 5.


C. 8.

D. 4.

Câu 12. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.

C. 24.

D. 144.
Trang 1/11 Mã đề 1


Câu 13. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Hai mặt.
C. Một mặt.
D. Ba mặt.
x−1
Câu 14. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
A. 2.
B. 2 2.
C. 2 3.

D. 6.
Câu 15. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [1; +∞).
C. (−∞; −3].
D. [−3; 1].
Câu 16. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là 4.
Câu 17. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 18. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 1.
C. 2.
2n + 1
Câu 19. Tìm giới hạn lim
n+1
A. 3.
B. 2.
C. 1.

D. 6.
D. 0.


Câu 20. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 21.
C. 22.
D. 24.
Câu 21. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. [1; 2].

D. (1; 2).

Câu 22. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; +∞).
D. (4; 6, 5].

2
3
Câu 23. [2] Phương trình log4 (x + 1) + 2 = log √2 4 − x + log8 (4 + x) có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. Vô nghiệm.
C. 3 nghiệm.
D. 1 nghiệm.
Câu 24. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất


√ của hàm số. Khi đó tổng
√M + m
A. 7 3.
B. 8 3.
C. 8 2.
D. 16.
Câu 25. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
D.
f (x)dx = f (x).
1
1
1
Câu 26. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. 2.
C. .

2
2

!
D. +∞.
Trang 2/11 Mã đề 1


Câu 27. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 2).

C. (−∞; 0) và (2; +∞). D. (0; 2).

Câu 28. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
4

12
12
6


2

1

3i lần lượt √l
Câu 29. Phần thực và √
phần ảo của số phức
z
=


A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2, phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 30. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =

.
4e + 2
4 − 2e
4e + 2

D. m =

1 − 2e
.
4 − 2e

Câu 31. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim− f (x) = f (b).

12 + 22 + · · · + n2
n3
2
B. .
3


x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim+ f (x) = f (b).

Câu 32. [3-1133d] Tính lim
A. 0.

C. +∞.

D.

1
.
3

[ = 60◦ , S O
Câu 33. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng

2a 57

a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
17
19
Câu 34. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m ≥ 0.
C. m > 1.

D. m > 0.

Câu 35. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 8.
B. 27.
C. 9.
D. 3 3.
Câu 36. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 4 mặt.

D. 6 mặt.



Câu 37. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3 3
a3 3
a3
3
A. a 3.
B.
.
C.
.
D.
.
3
12
4
Câu 38. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.

C. 30.

D. 20.

Câu 39. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|





12 17
A. 5.
B. 34.
C. 68.
D.
.
17
Câu 40. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B.
.
C. .
D. a.
2
2
3
Trang 3/11 Mã đề 1


Câu 41. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.

B. 12.
C. 10.
Câu 42.
Z Các khẳng định
Z nào sau đây là sai?

k f (x)dx = k
f (x)dx, k là hằng số.
!
Z
0
C.
f (x)dx = f (x).
A.

Z
B.
Z
D.

D. 27.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

f (x)dx = F(x) +C ⇒


Z

f (u)dx = F(u) +C.

Câu 43. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (1; +∞).
x
Câu 44. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
1
3
3
A. .
B. .
C.
.
D. 1.
2
2
2
Câu 45. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.

Câu 46. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5

C. m > − .
D. m ≥ 0.
A. m ≤ 0.
B. − < m < 0.
4
4
Câu 47. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d nằm trên P.
Câu 48. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a =
.
loga 2
log2 a
Câu 49. Tính lim

2n2 − 1
3n6 + n4

2
.
C. 1.

3
Câu 50. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 5}.
A. 2.

B.

D. 0.
D. {4; 3}.

Câu 51. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = 4 + .
C. T = e + 1.
D. T = e + 3.
A. T = e + .
e
e
Câu 52. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục thực.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục ảo.
x−3
Câu 53. [1] Tính lim
bằng?

x→3 x + 3
A. +∞.
B. −∞.

C. 0.

D. 1.

Câu 54. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
Trang 4/11 Mã đề 1






a3 3
a3 3
a3 3
a3 3
A.
.
B.

.
C.
.
D.
.
6
36
24
12
Câu 55. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m > 3.
D. m ≤ 3.
Câu 56. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Tứ diện đều.
C. Nhị thập diện đều.

D. Thập nhị diện đều.

Câu 57. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 10.

D. 6.

C. 12.


Câu 58. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 1.

B. +∞.

C. 0.

un
bằng
vn
D. −∞.

Câu 59. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 20, 128 triệu đồng. C. 50, 7 triệu đồng.
D. 70, 128 triệu đồng.
Câu 60. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. 2.
D. Vơ số.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 61. [3] Cho hàm số f (x) = ln 2017 − ln
x
2016

4035
2017
A.
.
B. 2017.
C.
.
D.
.
2017
2018
2018

Câu 62. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 36.
C. 108.
D. 6.
Câu 63. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
.
D. 2a 6.
A. a 3.
B. a 6.
C.

2
8
Câu 64. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 64.
C. 81.
D. 96.
cos n + sin n
Câu 65. Tính lim
n2 + 1
A. −∞.
B. +∞.
C. 1.
D. 0.
Câu 66. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
a3
4a3 3
2a3 3
a3
A.
.
B.
.
C.
.
D.
.

3
3
3
6
Câu 67. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; 8).
C. A(−4; 8).
D. A(4; −8).
q
2
Câu 68. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [0; 2].
Câu 69. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 − ln x.

C. y0 = 1 + ln x.

D. y0 = ln x − 1.
Trang 5/11 Mã đề 1


1

. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.

Câu 70. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.

1
Câu 71. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 ≤ m ≤ −1.
C. (−∞; −2) ∪ (−1; +∞). D. −2 < m < −1.

Câu 72. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. −3.
B. 3.
C. − .
D. .
3
3
Câu 73. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1

B. V = S h.
C. V = S h.
D. V = 3S h.
A. V = S h.
3
2
Câu 74. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
2
Câu 75. Tính
√ mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i. √4
B. |z| = 5.
C. |z| = 5.
A. |z| = 2 5.

D. |z| = 5.

Câu 76. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1134 m.
C. 1202 m.
D. 6510 m.
Câu 77. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 32π.

C. V = 4π.
D. 16π.
Câu 78. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng 2n.
C. Số mặt của khối chóp bằng 2n+1.
D. Số đỉnh của khối chóp bằng 2n + 1.
2−n
bằng
Câu 79. Giá trị của giới hạn lim
n+1
A. 2.
B. 1.
Câu 80. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R.
x+1
Câu 81. Tính lim
bằng
x→+∞ 4x + 3
1
A. .
B. 1.
3

C. −1.

D. 0.

C. D = R \ {0}.


D. D = R \ {1}.

C. 3.

D.

1
.
4

Câu 82. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 4 mặt.

D. 10 mặt.
x+2
Câu 83. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 3.
C. 1.
D. 2.
Câu 84. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.


C. 20.

D. 12.
Trang 6/11 Mã đề 1


Câu 85. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 86. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 8.

C. 12.

Câu 87. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 8.

C. 20.

D. 20.

D. 30.
[ = 60◦ , S A ⊥ (ABCD).
Câu 88. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là



a3 2
a3 3
a3 2
3
C.
.
B. a 3.
.
D.
.
A.
12
4
6
Câu 89. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
A. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= 0.
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
!vn
un
= +∞.
D. Nếu lim un = a > 0 và lim vn = 0 thì lim

vn
Câu 90. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 2e.
C. 2e + 1.
D. 3.
e
Câu 91. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.
C. ln 4.
D. ln 10.
Câu 92. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
.
B. a 2.
.
A.
C. 2a 2.
D.
2
4

Câu 93. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3
3
A. 20a .
B. 10a .
C. 40a .
D.
.
3
x2 − 5x + 6
Câu 94. Tính giới hạn lim
x→2
x−2
A. 5.
B. 1.
C. −1.
D. 0.
Câu 95. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 96. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng




a 2
a 2
A.
.
B.
.
C. a 3.
D. a 2.
2
3

x2 + 3x + 5
Câu 97. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 0.
C. 1.
D. − .
4
4
Trang 7/11 Mã đề 1


Câu 98. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)

2a
5a
a
8a
.
B.
.
C.
.
D. .
A.
9
9
9
9
x−2
Câu 99. Tính lim
x→+∞ x + 3
2
A. 1.
B. 2.
C. − .
D. −3.
3
Câu 100. Phát biểu nào sau đây là sai?
1
A. lim qn = 1 với |q| > 1.
B. lim √ = 0.
n
1

C. lim k = 0 với k > 1.
D. lim un = c (Với un = c là hằng số).
n
Câu 101. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. Vô nghiệm.
D. 3 nghiệm.
Câu 102. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 24 m.
D. 8 m.
Câu 103. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.

B. 7.

C. 0.

D. 9.

Câu 104. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là 4, phần ảo là 1.

Câu 105. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. 2.
B. −2.
C. − .
D. .
2
2
Câu 106. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.
.
D.
.
12
6
24
Câu 107. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.





5 13
B. 26.
C.
A. 2 13.
.
D. 2.
13
x
Câu 108. [1] Đạo hàm của hàm số y = 2 là
1
1
A. y0 = x
.
B. y0 = 2 x . ln x.
C. y0 =
.
D. y0 = 2 x . ln 2.
2 . ln x
ln 2

Câu 109.√Thể tích của khối lập phương có cạnh bằng a 2


2a3 2
A.
.
B. V = a3 2.
C. 2a3 2.
D. V = 2a3 .

3
Câu 110. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 1587 m.
C. 387 m.
D. 27 m.
Trang 8/11 Mã đề 1


Câu 111. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lập phương.
C. Hình chóp.
!4x
!2−x
3
2


Câu 112. Tập các số x thỏa mãn
3
2
#
"
!
"

!
2
2
2
A. −∞; .
B. − ; +∞ .
C.
; +∞ .
3
3
5

D. Hình lăng trụ.

#
2
D. −∞; .
5

Câu 113. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Năm tứ diện đều.
Câu 114. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .

A. lim [ f (x) − g(x)] = a − b.
B. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) + g(x)] = a + b.
x→+∞

x→+∞

log7 16
Câu 115. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. −4.
B. 2.
C. 4.
D. −2.
log(mx)
Câu 116. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0.
Câu 117. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.

B. 72.
C. −7, 2.

D. 0, 8.

Câu 118. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5; 2}.
C. {5}.
D. {2}.
x−1 y z+1
= =

Câu 119. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x + y − z = 0.
Câu 120. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là

4a3 3
8a3 3

a3 3
8a3 3
.
B.
.
C.
.
D.
.
A.
3
9
9
9
Câu 121. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính


√ thể tích của khối chóp 3S .ABC theo a
3
a
a3 5
a3 15
a 15
.
B.
.
C.
.
D.

.
A.
25
3
25
5
Câu 122. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối 20 mặt đều.
D. Khối tứ diện đều.
Câu 123. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
a 2
11a2
a2 5
a2 7
A.
.
B.
.
C.
.
D.
.
4
32

16
8
Trang 9/11 Mã đề 1


[ = 60◦ , S O
Câu 124. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S


a 57
2a 57
a 57
C.
A.
.
B. a 57.
.
D.
.
19
19
17
Câu 125. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

C. aαβ = (aα )β .
D. aα+β = aα .aβ .

A. aα bα = (ab)α .
B. β = a β .
a
Câu 126. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
B. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) có giá trị lớn nhất trên K.
Câu 127. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {3; 3}.

D. {4; 3}.

Câu 128. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = (−2; 1).
C. D = [2; 1].
D. D = R.
mx − 4
Câu 129. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 34.
C. 45.
D. 67.
2


Câu 130. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2. A

3. A

4. A

5. A

6.

7.


C

8.

9.

C

10.

11. A

12.

13. A

14.

15.

D

B
D
C
D
C

16.


D
D

17.

B

18.

19.

B

20.

21.

B

22.

D

23. A

24.

D

25. A


26.

27.

C

29.

D

C

30.

C

C

32.

33.

C

34. A
D

37.


D
B

39.

C

38.

B

28.

31.
35.

C

D

40.

D

41. A

42.

D


43.

B

44.

D

45.

B
B

46.

C

47.

48.

C

49.

D

50.

C


51.

D

52.

C

53.

54.

D

55. A

56.

D

57. A

58.

C

59.

60.


C

61.

62. A

63.

64.
66.

C

B
D
B

65.

C

67.

B

68. A

69.
1


D
B
C


70.

71.

C
D

72.

B

73. A

74. A

C

75.

76.

D

79.


C

78.

B

80.

B

81.

D

82. A

83.

D

84.

C

86.

C

88.


C

85. A
C

87.
89.

90.

D

91. A

92. A

93. A

94.

95.

D

98. A

99. A

100. A

B

102. A

103.
105.

C

96. A

B

97.
101.

D

D

C

104.

B

106. A

107.


C

108.

D

109.

C

110.

D

111. A

112.

B

113. A

114.

B

115. A

116. A
C


117.
119.

B

121. A
123.
125.

D

C

120.

C

122.

C

124. A

B

126. A
128.

127. A

129.

118.

B

130.

2

D
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×