Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (707)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (157.28 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

1 − 2n
bằng?
Câu 1. [1] Tính lim
3n + 1
2
2
1
B. .
C. 1.
D. − .
A. .
3
3
3
Câu 2. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là 1.
Câu 3. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].


(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 4.

C. 2.
D. 1.
log(mx)
Câu 4. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0.
D. m < 0 ∨ m > 4.
Câu 5. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. m > − .
C. m ≥ 0.
D. − < m < 0.
4
4
2
x − 12x + 35
Câu 6. Tính lim
x→5

25 − 5x
2
2
A. −∞.
B. − .
C. +∞.
D. .
5
5
2
x −9
Câu 7. Tính lim
x→3 x − 3
A. 6.
B. −3.
C. 3.
D. +∞.
[ = 60◦ , S O
Câu 8. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng

2a 57
a 57
a 57
A.
.
B.
.

C.
.
D. a 57.
19
19
17
8
Câu 9. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 64.
C. 96.
D. 82.
Câu 10. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là


a3 3
a3 3
2a3 3
.
B.
.
C.
.
D. a3 3.
A.
3
6

3
Câu 11. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 10a3 .
C. 40a3 .
D. 20a3 .
3
Trang 1/11 Mã đề 1


Câu 12. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 12.

C. 30.

D. 20.
[ = 60◦ , S A ⊥ (ABCD).
Câu 13. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là

3
3

a 2

a 2
a3 3
3
B.
.
C.
.
D.
.
A. a 3.
4
12
6
x2 − 3x + 3
Câu 14. Hàm số y =
đạt cực đại tại
x−2
A. x = 3.
B. x = 0.
C. x = 1.
D. x = 2.
2x + 1
Câu 15. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. 2.
C. 1.
D. .
2

Câu 16. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 12.
C. 20.
D. 8.
Câu 17. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 8.

C. 30.
D. 20.
a
1
Câu 18. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 7.
C. 4.
D. 1.
Câu 19. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. Vô số.
D. 1.


Câu 20. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt l √


B. Phần thực là 1√− 2, phần ảo là − √3.
A. Phần thực là √2, phần ảo là 1 − √3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 21. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 8π.
C. V = 4π.
D. 16π.
Câu 22. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
.
B. 68.
A.
C. 34.
D. 5.
17
Câu 23. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 24 m.
C. 12 m.
D. 16 m.
Câu 24. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính

f (2) + f (4)?
A. 11.
B. 4.
C. 12.
D. 10.
Câu 25.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 2.
C. 10.
D. 1.
Câu 26. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).

C. (−∞; 0) và (2; +∞). D. (−∞; 2).

Câu 27. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Trang 2/11 Mã đề 1


Câu 28. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. Vô nghiệm.

D. 3.
Câu 29. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
5
13
23
A.
.
B. − .
C.
.
D. −
.
25
16
100
100
Câu 30. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
C.
f (x)dx = f (x).

f (x)dx = F(x) + C.

D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).

1
ln x p 2
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 31. Gọi F(x) là một nguyên hàm của hàm y =
x
3
8
8
1
1
A. .
B. .
C. .
D. .
3
9
3
9
2
Câu 32. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 22016 .
D. 0.
Câu 33. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng




a 2
a 2
A.
.
B. a 3.
.
D. a 2.
C.
3
2
3
Câu 34. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x + (m2√+ 1)2 x trên [0; 1] bằng 8
B. m = ±3.
C. m = ± 2.
D. m = ±1.
A. m = ± 3.

Câu 35. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. Vơ số.
D. 62.




Câu 36. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9

3
A. m ≥ 0.
B. 0 ≤ m ≤ .
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4
4
2
2
0
Câu 37. Cho f (x) = sin x − cos x − x. Khi đó f (x) bằng
A. 1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 − sin 2x.
D. −1 + 2 sin 2x.
2

2

Câu 38. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
4
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.


D. |z| = 2 5.

Câu 39. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;

tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3
3

a 2
a 3
a 3
A.
.
B. a3 3.
C.
.
D.
.
2
4
2
Câu 40. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
4a3
2a3 3
4a3 3
2a3
A.

.
B.
.
C.
.
D.
.
3
3
3
3
Câu 41. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −9.
C. −15.
D. −12.
Trang 3/11 Mã đề 1


Câu 42. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B.

.
C. a 6.
D.
.
A.
2
3
6
!
x+1
Câu 43. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
.
C.
.
D.
.
A. 2017.
B.
2018
2018
2017
Câu 44. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (II) và (III).

C. (I) và (III).

D. Cả ba mệnh đề.

Câu 45. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.



x=t




Câu 46. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)





z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
C. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
D. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
Câu 47. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
2

Câu 48. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 3 − log2 3.
C. 2 − log2 3.


D. 1 − log2 3.

Câu 49. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Năm cạnh.
C. Bốn cạnh.

D. Ba cạnh.

9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
B. 2.
C. −1.
D. .
2

Câu 50. [2-c] Cho hàm số f (x) =
A. 1.

Câu 51. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. 2.
C. −4.

D. −2.
Trang 4/11 Mã đề 1



Câu 52. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 53. [1] Đạo hàm của hàm số y = 2 x là
1
.
B. y0 = 2 x . ln x.
A. y0 =
ln 2

C. y0 =

1
2 x . ln

x

.

D. y0 = 2 x . ln 2.

un
bằng
vn
A. 1.
B. 0.
C. −∞.

D. +∞.
tan x + m
Câu 55. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (−∞; 0] ∪ (1; +∞).

Câu 54. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim

Câu 56. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B. 12.
C.
.
D. 27.
2
Câu 57. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng

phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3 √

2 3
A. 2.
B. 3.
C.
.
D. 1.
3
Câu 58. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [−3; 1].
C. (−∞; −3].
D. [1; +∞).


4n2 + 1 − n + 2
bằng
Câu 59. Tính lim
2n − 3
3
A. +∞.
B. .
C. 1.
D. 2.
2
Câu 60. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.

B. Trục thực.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục ảo.
Câu 61. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 4.

C. 10.

D. 6.

x3 −3x+3

Câu 62. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
A. e.
B. e2 .
C. e5 .

D. e3 .

2

Câu 63. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 5.
C. 3.

D. 4.


Câu 64. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
x+2
Câu 65. Tính lim
bằng?
x→2
x
A. 2.
B. 0.
C. 1.
D. 3.
0


0

0

0

Trang 5/11 Mã đề 1


Câu 66. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ± 3.
B. m = ±1.
C. m = ±3.
D. m = ± 2.
Câu 67. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
C.
dx = log |u(x)| + C.
u(x)
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
1

Câu 68. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (−∞; 1).
C. D = (1; +∞).

Câu 69. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.

B. 3.

C. 4.

D. D = R.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 2.

Câu 70. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+1

c+2
c+2
c+3
7n2 − 2n3 + 1
Câu 71. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. 1.
C. - .
D. 0.
3
3
Câu 72. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.
D. 102.016.000.
x−2
Câu 73. Tính lim
x→+∞ x + 3
2
A. 1.
B. 2.
C. − .
D. −3.

3
Câu 74. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.
D. {3; 4}.
Câu 75. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. −3.
C. 3.
D. 0.
Câu 76. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 21.
C. 22.
D. 23.
1
Câu 77. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3, m = 4.
C. m = 4.
D. m = −3.
Câu 78. [2] Cho chóp đều S .ABCD có đáy là hình vuông tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng




a 6
A.
.
B. a 3.
C. a 6.
D. 2a 6.
2
Trang 6/11 Mã đề 1


Câu 79. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 20.
C. 12.
D. 8.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 80. Tìm m để hàm số y =
x+m
A. 34.
B. 67.
C. 26.
D. 45.
Câu 81. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 82. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên

(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD


√ là
3
3
3
3
8a 3
a 3
4a 3
8a 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
Câu 83. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 3).

D. A0 (−3; −3; −3).
Câu 84. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 85. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = ey − 1.
B. xy0 = −ey + 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
Câu 86. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = 1 + ln x.

C. y0 = x + ln x.

D. y0 = ln x − 1.

Câu 87. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với


√mặt phẳng (AIC) có diện tích
2
2
2
2
a 2
a 7
11a
a 5
.
B.
.
C.
.
D.
.
A.
16
4
8
32
!
1
1
1
Câu 88. Tính lim
+
+ ··· +
1.2 2.3

n(n + 1)
3
A. 0.
B. .
C. 1.
D. 2.
2
 π π
Câu 89. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 7.
C. −1.
D. 3.
1 − n2
Câu 90. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. 0.
C. − .
D. .
2
2
3

Câu 91. [1] Biết log6 a = 2 thì log6 a bằng

A. 36.
B. 108.
C. 6.
D. 4.
Câu 92. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .

Câu 93. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2

6
3
6
Trang 7/11 Mã đề 1


!2x−1
!2−x
3
3
Câu 94. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [3; +∞).
C. [1; +∞).

D. (+∞; −∞).

Câu 95. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. 1.
C. e.

D. −2 + 2 ln 2.

Câu 96.
Z Các khẳng định nào sau

Z đây là sai?
f (x)dx = F(x) + C ⇒

A.
Z
C.

f (x)dx = F(x) +C ⇒

f (t)dt = F(t) + C. B.

Z

f (u)dx = F(u) +C. D.

Z
Z

!0
f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 97. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. Vô nghiệm.

D. 3.


Câu 98. [1] Đạo hàm của làm số y = log x là
1
1
1
ln 10
A. y0 =
.
B. y0 = .
C.
.
D. y0 =
.
x ln 10
x
10 ln x
x
Câu 99. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 40 .(3)10
C 20 .(3)20
C 10 .(3)40
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4

4
4
4
!
1
1
1
+ ··· +
Câu 100. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
B. .
C. 2.
D. +∞.
A. .
2
2
Câu 101.
√ Thể tích của tứ diện đều
√cạnh bằng a


a3 2
a3 2
a3 2
a3 2
A.
.

B.
.
C.
.
D.
.
2
6
12
4
x+3
Câu 102. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 1.
C. Vô số.
D. 3.
Câu 103. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. 2.
B. −2.
C. .
D. − .
2
2
Câu 104. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành

A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 105. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
A. Nếu

f (x)dx =

Trang 8/11 Mã đề 1


Z
D. Nếu

f (x)dx =
0


Z

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

Câu 106. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m > 3.
D. m < 3.
[ = 60◦ , S O
Câu 107. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ O đến (S BC) bằng

√ với mặt đáy và S O = a.

a 57
2a 57
a 57
.
B.
.
C. a 57.
.
D.
A.
19
17
19

Câu 108. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 10.
C. 20.
D. 30.
Câu 109. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9
15
6
18
Câu 110. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 3, 55.
C. 24.
D. 20.
Câu 111. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 5.


C. 4.

D. 3.

Câu 112. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 113. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (2; 1; 6).
C. ~u = (3; 4; −4).
D. ~u = (2; 2; −1).
12 + 22 + · · · + n2
Câu 114. [3-1133d] Tính lim
n3
1

2
A. .
B. .
C. 0.
D. +∞.
3
3
Câu 115. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3 3
a3
A.
.
B.
.
C.
.
D. a3 .
2
6
3
Câu 116. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 2.

B. .
C. 1.
D.
.
2
2
Câu 117. Phát biểu nào sau đây là sai?
1
1
B. lim k = 0 với k > 1.
A. lim √ = 0.
n
n
n
C. lim q = 1 với |q| > 1.
D. lim un = c (Với un = c là hằng số).
Trang 9/11 Mã đề 1


Câu 118. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 119. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. Không tồn tại.
C. −5.
D. −3.
1

Câu 120. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; +∞).
C. (−∞; 3).
D. (1; 3).
Câu 121. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {5; 2}.
C. {3}.
D. {5}.
Câu 122. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a =
.
loga 2
log2 a
π
Câu 123. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

B. T = 4.
C. T = 2.

D. T = 3 3 + 1.
A. T = 2 3.
log 2x
Câu 124. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
1
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
A. y0 = 3
3
2x ln 10
2x ln 10
x ln 10
x3
Câu 125. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp đôi.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
Câu 126. Hàm số nào sau đây khơng có cực trị

x−2
1
D. y =
.
C. y = x + .
x
2x + 1
Câu 127. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có vơ số.
C. Có một.
D. Khơng có.
A. y = x3 − 3x.

B. y = x4 − 2x + 1.

2

Câu 128. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 8.
C. 6.

D. 5.

Câu 129. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5

a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
12
12
6
4
Câu 130. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Bát diện đều.
B. Thập nhị diện đều. C. Nhị thập diện đều. D. Tứ diện đều.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.


2.

3. A
5.

B

4. A
6.

B

7. A

8.

9. A

D
B

10. A

11.

D

12.

B


13.

B

14.

C

15.

B

16.

C

17.
19.

C

18.

B

22. A

20.


D

23.

D
D

24.

C

25.

26.

C

27.

28.

B

29.

B

30.

D


31.

32.

D

33.

34.

B

C

D
B
C

35.

D

36.

B

37.

D


38.

B

39.

D

41.

D

40. A
42.

D

43.

44. A

45.

46. A

47. A

48.


C

50. A

D

51.

D
D

B

53.

54.

B

55.

58.

B

57. A
B

59.


60. A

C

61. A

62.

63.

C

64.

B

65. A

66.

B

67.

68.

D

49.


52.
56. A

B

69. A

C
1

D
C


70.
72.

71.

C
B

73. A

74.

D

75.


B
B

76.

C

77.

78.

C

79. A

80. A

81. A
D

82.

83.

84. A
86.

C

C


85. A
87.

B

C

88.

C

89. A

90.

C

91.

92.

C

93.

C

94.


C

95.

C

96.

C

97. A
99.

98. A
100.

D

104.

103.

B

107. A
C

112.

113. A


114. A

115. A

116. A

117.

C

B

118. A
120. A

B

121.

D
B

122.

C

124.

C


125. A

126.

127. A

128. A

129.

B

110. A

111.

123.

C

105. A

C

108. A

119.

D


101.

C

102.
106.

D

B

130.

2

D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×