Free LATEX
ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu R1. Công thức nào sai?
A. R sin x = − cos x + C.
C. e x = e x + C.
R
B. R cos x = sin x + C.
D. a x = a x . ln a + C.
Câu 2. Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3 + 6x2 + mx − 2 đi qua điểm (11;1)?
A. m = 3.
B. m = −15.
C. m = −2.
D. m = 13.
−u (2; −2; 1), kết luận nào sau đây là đúng?
Câu 3. Trong
không gian với hệ tọa độ Oxyz cho →
√
−u | = 3.
−u | = 3
−u | = 9.
−u | = 1.
A. |→
B. |→
C. |→
D. |→
.
Câu 4. Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm
số y = 3x2 + log3 x + m là:
A. S = (−∞; ln3).
B. S = [ 0; +∞).
C. S = (−∞; 2).
D. S = [ -ln3; +∞).
Câu 5. Bất đẳng thức nào sau đây là đúng?
A. 3−e > 2−e .
C. 3π < 2π .
√
√
e
π
B. ( √3 − 1) < ( √3 − 1) .
π
e
D. ( 3 + 1) > ( 3 + 1) .
Câu 6. Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có
tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo
dây cung dài nhất?
A. x = 5 + ty = 5 + 2tz = 2.
B. x = 5 + 2ty = 5 + tz = 2.
C. x = 5 + 2ty = 5 + tz = 2 − 4t.
D. x = 3 + 2ty = 4 + tz = 6.
Câu 7. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
3
4
B. πR3 .
C. 4πR3 .
D. πR3 .
A. πR3 .
3
4
Câu 8. Hàm số nào sau đây khơng có cực trị?
A. y = x2 .
B. y = cos x.
4
2
C. y = x + 3x + 2 .
D. y = x3 − 6x2 + 12x − 7.
Câu 9. Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng?
A. 0.
B. −1.
C. 1.
D. π.
Câu 10. Cho a > 0 và a , 1. Giá trị của a
A. 3.
B. 9.
D. 6.
log √a 3
bằng? √
C. 3.
Câu 11. Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2). Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450 .
A. C(1; 5; 3).
B. C(−3; 1; 1).
C. C(3; 7; 4).
D. C(5; 9; 5).
Câu 12. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 và đường thẳng y = x.
1
2
1
A. .
B. .
C. − .
D. 1.
6
3
6
2x + 2017
Câu 13. Cho hàm số y =
(1). Mệnh đề nào dưới đây là đúng?
x
+ 1
A. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x = −1, x = 1..
Trang 1/5 Mã đề 001
B. Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và khơng có tiệm cận
đứng.
C. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = −1..
D. Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y = 2 và khơng có tiệm cận đứng.
Câu 14. Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − 4 và f (0) = 1, f (1) = 3. Tính f (−1).
A. f (−1) = 3.
B. f (−1) = −5.
C. f (−1) = −1.
D. f (−1) = −3.
a3
Câu 15. Cho hình chóp đều S .ABCD có cạnh đáy bằng a và thể tích bằng . Tìm góc giữa mặt bên và
6
mặt đáy của hình chóp đã cho.
A. 1350 .
B. 300 .
C. 450 .
D. 600 .
Câu 16. Cho hàm số y = x3 + 3x2 − 9x − 2017. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; −3).
B. Hàm số đồng biến trên khoảng (−3; 1).
C. Hàm số nghịch biến trên khoảng (−3; 1).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 17. Cho hai
√ số phức z1 + z2 .
√ số phức z1 = 1 + i và z2 = 2 − 3i. Tính mơ-đun của
A. |z1 + z2 | = 13.
B. |z1 + z2 | = 1.
C. |z1 + z2 | = 5.
D. |z1 + z2 | = 5.
Câu 18. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 0.
B. A = 2ki.
C. A = 2k.
D. A = 1.
(1 + i)(2 + i) (1 − i)(2 − i)
Câu 19. Cho số phức z thỏa mãn z =
+
. Trong tất cả các kết luận sau, kết
1−i
1+i
luận nào đúng?
1
A. z là số thuần ảo.
B. |z| = 4.
C. z = z.
D. z = .
z
25
1
1
Câu 20. Cho số phức z thỏa
=
+
. Khi đó phần ảo của z bằng bao nhiêu?
z
1 + i (2 − i)2
A. −17.
B. 31.
C. 17.
D. −31.
Câu 21. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = 21009 i. B. (1 + i)2018 = 21009 .
C. (1 + i)2018 = −21009 . D. (1 + i)2018 = −21009 i.
Câu 22. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mơ-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 0.
B. 2.
C. 1.
D. 3.
Câu 23.
√ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i. Khi√đó mơ-đun của số phức w = 6z − 25i là
A. 29.
B. 13.
C. 2 5.
D. 5.
Câu 24. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. −9.
B. 10.
C. 9.
D. −10.
4 + 2i + i2017
Câu 25. Số phức z =
có tổng phần thực và phần ảo là
2−i
A. 2.
B. -1.
C. 3.
D. 1.
Câu 26. Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm
cực đại có hồnh độ nhỏ hơn 1.
A. S = (−4; −1).
B. S = (−∞; −4) ∪ (−1; +∞) .
C. S = [−1; +∞) .
D. S = (−1; +∞) .
1
1
Câu 27. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có
3
3
hai điểm cực trị nằm về phía bên phải trục tung?
A. m < 2.
B. m > 3 hoặc m < 2. C. m > 2.
D. m > 3.
Trang 2/5 Mã đề 001
Câu 28. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1;
Độ dài đường cao AH của tứ diện ABCD là:
A. 7 .
B. 6.
C. 9 .
D. 5 .
Câu 29. Đồ thị như hình bên là đồ thị của hàm số nào?
−2x + 3
2x + 2
2x + 1
A. y =
.
B. y =
.
C. y =
.
1−x
x+1
x+1
R4
R4
R1
Câu 30. Cho f (x)dx = 10 và f (x)dx = 8. Tính f (x)dx
−1
A. 2.
D. y =
2x − 1
.
x−1
−1
1
B. 18.
C. 0.
D. −2.
x2 + 2x
là:
Câu 31. Khoảng cách giữa hai điểm cực trị của đồ thị hàm số y =
x−1
√
√
√
√
A. 2 15.
B. 2 3.
C. 2 5.
D. −2 3.
Câu 32. Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 . Khi t = 0 thì vận tốc của vật là 30 (m/s).
Quãng đường vật đó đi được sau 2 giây gần với giá trị nào nhất sau đây?
A. 49m.
B. 50m.
C. 47m.
D. 48m.
Câu 33. Cho hình chóp S .ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a,
d = 600 . Tính thể tích khối cầu ngoại tiếp hình chóp S .ABC.
BAC
√
√
√
5 3
5 5π 3
5 5 3
20 5πa3
A. V = πa .
B. V =
a.
C. V =
πa .
D. V =
.
6
2
6
3
Câu 34. Biết rằng |z1 + z2 | = 3 và |z1 | = 3.Tìm giá trị nhỏ nhất của |z2 |?
3
1
A. 2.
B. 1.
C. .
D. .
2
2
Câu 35. (Sở Nam Định) Tìm mơ-đun của số phức z biết z − 4 = (1 + i)|z| − (4 + 3z)i.
1
A. |z| = 1.
B. |z| = .
C. |z| = 2.
D. |z| = 4.
2
Câu 36. Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = 1 và z1 +z2 +z3 = 0. Tính A = z21 +z22 +z23 .
A. A = −1.
B. A = 1 + i.
C. A = 1.
D. A = 0.
Câu 37. (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω =
phức ω là điểm nào?
A. điểm P.
B. điểm R.
Câu 38. Cho số phức z , 1 thỏa mãn
A. |z| = 1.
1
B. |z| = .
2
1
là một trong bốn điểm P, Q, R, S . Hỏi điểm biểu diễn số
z
C. điểm Q.
D. điểm S .
z+1
là số thuần ảo. Tìm |z| ?
z−1
C. |z| = 2.
D. |z| = 4.
√
2 2
Câu 39. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Mệnh đề nào dưới đây
3
đúng?
√
8
B. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = .
A. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2.
3√
2 2
.
C. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.
D. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 =
3
Câu 40. Gọi z1 ; z2 là hai nghiệm của phương trình z2 − z + 2 = 0.Phần thực của số phức
[(i − z1 )(i − z2 )]2017 bằng bao nhiêu?
A. −21008 .
B. 21008 .
C. 22016 .
D. −22016 .
√
2
Câu 41. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Giá trị lớn nhất của biểu thức
2
P = |z1 + z2 | + 2|z2 + z3 | + 3|z3 + z1 | bằng bao nhiêu?
Trang 3/5 Mã đề 001
A. Pmax
√
7 2
.
=
3
B. Pmax
√
10 2
=
.
3
C. Pmax
√
4 5
=
.
5
D. Pmax
√
3 6
=
.
2
Câu 42. Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2. Tìm giá trị lớn nhất của biểu thức
S = a + 2b.
√
√
√
√
A. 2 5.
B. 10.
C. 15.
D. 5.
Câu 43. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 2.
B. m = 3.
C. m = 1.
D. m = 4.
Câu 44. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = −x4 + 2x2 .
B. y = x3 − 3x2
.
C. y = −x4 + 2x2 + 8.
D. y = −2x4 + 4x2 .
Câu 45. Cho mặt cầu (S ) có bán kính bằng R = 5, một hình trụ (T )có hai đường trịn đáy nằm trên mặt
cầu (S ). Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu.
√
√
√
√
125π 3
250π 3
400π 3
500π 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
√
Câu 46. Tính đạo hàm của hàm số y = log4 x2 − 1
A. y′ =
(x2
x
.
− 1) ln 4
B. y′ =
2(x2
x
.
− 1) ln 4
C. y′ = √
1
x2 − 1 ln 4
.
D. y′ =
(x2
x
.
− 1)log4 e
Câu 47. Cho tứ diện DABC, tam giácABC là vuông tại B, DA vng góc với mặt phẳng (ABC). Biết
AB = 3a, BC = 4a, DA = 5a. Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng
√
√
√
√
5a 2
5a 3
5a 3
5a 2
.
B.
.
C.
.
D.
.
A.
2
3
2
3
Câu 48. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
2 7 21
5 11 17
4 10 16
7 10 31
A. M( ; ; ).
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
3 3 3
3 3 3
3 3 3
3 3 6
Câu 49. Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhất và nhỏ nhất
trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b = −36.
A. m = 4.
B. m = 1.
C. m = 0 hoặc m = −16.
D. m = 0 hoặc m = −10.
Câu 50. Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau. Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
A. 36080254 đồng.
C. 36080251 đồng.
B. 36080253 đồng.
D. 36080255 đồng.
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001