Free LATEX
ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu 1. Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm
số y = 3x2 + log3 x + m là:
A. S = (−∞; 2).
B. S = [ -ln3; +∞).
C. S = [ 0; +∞).
D. S = (−∞; ln3).
x
trên tập xác định của nó là
Câu 2. Giá trị nhỏ nhất của hàm số y = 2
x +1
1
1
A. min y = 0.
B. min y = −1.
C. min y = − .
D. min y = .
R
R
R
R
2
2
Câu 3. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
A. −1 < m < .
B. m ∈ (−1; 2).
C. m ≥ 0.
D. m ∈ (0; 2).
2
Câu 4. Hàm số nào sau đây đồng biến trên R?
A. y = x√4 + 3x2 + 2. √
B. y = tan x.
2
2
C. y = x + x + 1 − x − x + 1.
D. y = x2 .
Câu 5. Hàm số nào sau đây khơng có cực trị?
A. y = x3 − 6x2 + 12x − 7.
C. y = x2 .
B. y = x4 + 3x2 + 2 .
D. y = cos x.
Câu 6. Cho hai số thực a, bthỏa mãn√ a > b > 0. Kết luận√nào sau√ đây là sai?
√
√
√
5
A. ea > eb .
B. 5 a < b.
C. a− 3 < b− 3 .
D. a 2 > b 2 .
Câu 7. Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3 + 6x2 + mx − 2 đi qua điểm (11;1)?
A. m = 13.
B. m = −15.
C. m = −2.
D. m = 3.
Câu 8. Cho hình lập phương ABCD.A′ B′C ′ D′ . Tính góc giữa hai đường thẳng AC và BC ′ .
A. 360 .
B. 450 .
C. 300 .
D. 600 .
Câu 9. Cho x, y, z là ba số thực khác 0 thỏa mãn 2 x = 5y = 10−z . Giá trị của biểu thức A = xy + yz +
zxbằng?
A. 2.
B. 1.
C. 3.
D. 0.
y+2
z
x−1
Câu 10. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
=
= . Viết phương
1
−1
2
trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vng góc với d.
A. (P) : x − y + 2z = 0. B. (P) : x + y + 2z = 0. C. (P) : x − y − 2z = 0. D. (P) : x − 2y − 2 = 0.
Câu 11. Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình
vng. Tính thể tích của khối trụ.
A. 2π.
B. 4π.
C. π .
D. 3π.
Câu 12. Tập nghiệm của bất phương trình log 1 (x − 1) ≥ 0 là:
2
B. (1; 2].
C. (1; 2).
D. [2; +∞).
3
Câu 13. Cho hàm số y =
x
− mx + 5. Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực
trị.
A. 1.
B. 3.
C. 2.
D. 4.
A. (−∞; 2].
Trang 1/5 Mã đề 001
Câu 14. Cho hình trụ có hai đáy là hai đường trịn (O; r) và (O′ ; r). Một hình nón có đỉnh O và có đáy là
hình trịn (O′ ; r). Mặt xung quanh của hình nón chia khối trụ thành hai phần. Gọi V1 là thể tích của khối
V1
nón, V2 là thể tích của phần cịn lại. Tính tỉ số .
V2
V1 1
V1
V1 1
V1 1
A.
= .
B.
= 1.
C.
= .
D.
= .
V2 6
V2
V2 2
V2 3
Câu 15. Cho hình phẳng (H) giới hạn bởi các đường y = x2 ; y = 0; x = 2 Tính thể tích V của khối trịn
xoay tạo thành khi quay (H) quanh trục Ox.
32
8
8π
32π
.
B. V = .
C. V = .
D. V =
.
A. V =
5
5
3
3
Câu 16. Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y = x3 +x2 và y = x2 +3x+mcắt
nhau tại nhiều điểm nhất.
A. m = 2.
B. −2 ≤ m ≤ 2.
C. −2 < m < 2.
D. 0 < m < 2.
Câu 17. Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i. Khi đó điểm nào sau đây biểu diễn số phức z ?
A. P(−2; 3).
B. M(2; −3).
C. Q(−2; −3).
D. N(2; 3).
Câu 18. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. 10.
B. −10.
C. 9.
D. −9.
(1 + i)2017
có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 19. Số phức z =
21008 i
A. 0.
B. 2.
C. 21008 .
D. 1.
Câu 20. Cho hai
√ số phức z1 = 1 + i và z2√= 2 − 3i. Tính mơ-đun của số phức z1 + z2 .
B. |z1 + z2 | = 5.
C. |z1 + z2 | = 5.
D. |z1 + z2 | = 1.
A. |z1 + z2 | = 13.
!2016
!2018
1+i
1−i
+
bằng
Câu 21. Số phức z =
1−i
1+i
A. 0.
B. 2.
C. 1 + i.
D. −2.
(1 + i)(2 + i) (1 − i)(2 − i)
Câu 22. Cho số phức z thỏa mãn z =
+
. Trong tất cả các kết luận sau, kết
1−i
1+i
luận nào đúng?
1
A. z là số thuần ảo.
B. z = .
C. z = z.
D. |z| = 4.
z
Câu 23. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A. z − z = 2a.
B. |z2 | = |z|2 .
C. z + z = 2bi.
D. z · z = a2 − b2 .
Câu 24. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. −3.
B. −7.
C. 3.
D. 7.
Câu 25. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 3.
B. 4.
C. 2.
1
1
1
Câu 26. Rút gọn biểu thức M =
+
+ ... +
ta được:
loga x loga2 x
logak x
4k(k + 1)
k(k + 1)
k(k + 1)
A. M =
.
B. M =
.
C. M =
.
loga x
loga x
3loga x
Câu 27. Cho
R4
−1
A. −2.
f (x)dx = 10 và
R4
1
B. 18.
f (x)dx = 8. Tính
R1
D. 1.
D. M =
k(k + 1)
.
2loga x
f (x)dx
−1
C. 2.
D. 0.
Trang 2/5 Mã đề 001
Câu 28. Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1). Mặt cầu đường kính AB có phương trình
A. (x + 1)2 + (y − 1)2 + (z − 2)2 = 6.
B. (x − 1)2 + (y + 1)2 + (z + 2)2 = 6.
√
2
2
2
C. (x + 1) + (y − 1) + (z − 2) = 24.
D. (x + 1)2 + (y − 1)2 + (z − 2)2 = 6.
Re lnn x
Câu 29. Tính tích phân I =
dx, (n > 1).
x
1
1
1
1
A. I = n + 1.
B. I = .
C. I =
.
D. I =
.
n
n+1
n−1
Câu 30. Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x2 − 4x + 5, tiếp tuyến tại
A(1; 2) và tiếp tuyến tại B(4; 5) của đồ thị (C).
5
7
9
3
B. .
C. .
D. .
A. .
4
4
4
4
Câu 31. Họ nguyên hàm của hàm số y = (x − 1)e x là:
A. xe x−1 + C.
B. xe x + C.
C. (x − 1)e x + C.
D. (x − 2)e x + C.
Câu 32. Lăng trụ ABC.A′ B′C ′ có đáy là tam giác đều cạnh a. Hình chiếu vng góc của A′ lên (ABC)
là trung điểm của BC. Góc giữa cạnh bên và mặt phẳng đáy là 600 . Khoảng cách từ C ′ đến mp (ABB′ A′ )
là
√
√
√
√
3a 13
3a 10
3a 13
a 3
.
B.
.
C.
.
D.
.
A.
2
13
20
26
Câu 33. Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước. Người ta thả vào đó một
khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 18π
(dm3). Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm
trong nước. Tính thể tích nước cịn lại trong bình.
A. 24π(dm3 ).
B. 12π(dm3 ).
C. 54π(dm3 ).
D. 6π(dm3 ).
√
Câu 34. Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào dưới đây đúng?
1
3
1
3
B. < |z| < .
C. |z| < .
D. |z| > 2.
A. ≤ |z| ≤ 2.
2
2
2
2
Câu 35. Cho z1 , z2 , z3 là các số phức thỏa mãn |z1 | = |z2 | = |z3 | = 1. Khẳng định nào sau đây đúng?
A. |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 |.
B. |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 |.
C. |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 |.
D. |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 |.
Câu 36. (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z|.
Đặt P = 8(b2 − a2 ) − 12. Mệnh đề nào dưới đây đúng?
2
2
A. P = (|z| − 4)2 .
B. P = |z|2 − 4 .
C. P = |z|2 − 2 .
D. P = (|z| − 2)2 .
Câu 37. Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − 1 + 2i)(z + 3i − 1)|. Tìm giá trị nhỏ nhất |w|min của
|w|, với w = z − 2 + 2i.
1
3
A. |w|min = .
B. |w|min = 2.
C. |w|min = .
D. |w|min = 1.
2
2
2z − i
Câu 38. Cho số phức z thỏa mãn |z| ≤ 1. ĐặtA =
. Mệnh đề nào sau đây đúng?
2 + iz
A. |A| ≤ 1.
B. |A| > 1.
C. |A| ≥ 1.
D. |A| < 1.
Câu 39. Giả sử z1 , z2 , . . . , z2016 là 2016 nghiệm phức phân biệt của phương trình z2016 +z2015 +· · ·+z+1 = 0
2017
Tính giá trị của biểu thức P = z2017
+ z2017
+ · · · + z2017
1
2
2015 + z2016
A. P = 1.
B. P = 2016.
C. P = 0.
D. P = −2016.
Câu 40. (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4 = (1 + i)|z| − (4 + 3z)i.
1
A. |z| = .
B. |z| = 2.
C. |z| = 4.
D. |z| = 1.
2
Câu 41. Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2
A. 18.
B. 8.
C. 9.
D. 4.
Trang 3/5 Mã đề 001
Câu 42. Cho số phức z , 1 thỏa mãn
1
A. |z| = .
2
z+1
là số thuần ảo. Tìm |z| ?
z−1
B. |z| = 1.
C. |z| = 4.
D. |z| = 2.
Câu 43. Trong khơng gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2 + y2 + z2 − 4x − 6y + 2z − 1 = 0.
√
√
A. R = 4.
B. R = 15.
C. R = 3.
D. R = 14.
Câu 44. Biết a, b ∈ Z sao cho
A. 3.
R
(x + 1)e2x dx = (
B. 1.
ax + b 2x
)e + C. Khi đó giá trị a + b là:
4
C. 4.
D. 2.
0
d
Câu 45. Cho hình chóp S .ABC có đáy ABC
√ là tam giác vng tại A; BC = 2a; ABC = 60 . Gọi Mlà
trung điểm cạnh BC, S A = S C = S M = a 5. Tính khoảng cách từ S đến mặt phẳng (ABC).
√
√
B. 2a.
C. a.
D. a 3.
A. a 2.
Câu 46. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x = −1; x = 2.
A.
23
.
4
B.
27
.
4
C.
29
.
4
D.
25
.
4
Câu 47. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vng góc với mặt phẳng
(ABC), S A = 2a. Gọi α là số đo góc giữa đường thẳng S B và mp(S AC). Tính giá trị sin α.
√
√
√
15
1
5
15
A.
.
B. .
C.
.
D.
.
5
2
3
10
Câu 48. Cho P = 2a 4b 8c , chọn mệnh đề đúng trong các mệnh đề sau.
A. P = 26abc .
B. P = 2abc .
C. P = 2a+2b+3c .
D. P = 2a+b+c .
3x
Câu 49. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
cắt đường thẳng y = x + m tại
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. m = 1.
B. Không tồn tại m.
C. m = −2.
D. m = 2.
Câu 50. Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình nón đỉnh S và đáy là hình trịn nội tiếp tứ giác ABCD bằng
√
√
√
√
πa2 17
πa2 17
πa2 15
πa2 17
A.
.
B.
.
C.
.
D.
.
8
6
4
4
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001