Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Tính diện tích S của hình phẳng được giới hạn bởi các đường y = x2 , y = −x
1
5
1
1
A. S = .
B. S = .
C. S = .
D. S = .
6
6
2
3
Câu 2. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (−2; 0; 0).
B. (0; −2; 0).
C. (0; 2; 0).
D. (0; 6; 0).
Câu 3. Hình nón có bán kính đáy R, đường sinh l thì diện
bằng
√ tích xung quanh của nó √
2
2
D. 2π l2 − R2 .
A. πRl.
B. 2πRl.
C. π l − R .
p
Câu 4. Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) 1 − y. Kết luận nào
sau đây là sai?
A. Nếux > 2 thìy < −15.
B. Nếu 0 < x < 1 thì y < −3.
2
C. Nếu 0 < x < π thì y > 1 − 4π .
D. Nếux = 1 thì y = −3.
Câu 5. Cho hình√chóp đều S .ABCcó cạnh đáy bằng a và cạnh bên√bằng b. Thể tích của khối chóp là:
a2 3b2 − a2
3a2 b
A. VS .ABC =
.
B. VS .ABC =
.
12
q 12 √
√
a2 b2 − 3a2
3ab2
C. VS .ABC =
.
D. VS .ABC =
.
12
12
Câu 6. Hàm số nào sau đây khơng có cực trị?
A. y = x2 .
B. y = x4 + 3x2 + 2 .
3
2
C. y = x − 6x + 12x − 7.
D. y = cos x.
Câu R7. Cho hàm số f (x) = cos x + x. Khẳng định nào dưới
đây đúng?
R
2
A. f (x)dx = sin x + x + C.
B. f (x)dx = − sin x + x2 + C.
R
R
2
2
D. f (x)dx = − sin x + x2 + C.
C. f (x)dx = sin x + x2 + C.
Câu 8. Cho hình nón có đường kính đáy 2r và độ dài đường sinh l. Diện tích xung quanh của hình nón
đã cho bằng
A. 23 πrl2 .
B. πrl.
C. 2πrl.
D. 31 πr2 l.
Câu 9. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
. Gọi A và B là hai điểm thuộc
3
đường tròn đáy sao cho AB = 12,
đường tròn đáy đến mặt √
phẳng (S AB) bằng
√ khoảng cách từ tâm của
5
24
A. 24 .
B. 8 2.
C. 5 .
D. 4 2.
Câu 10. Trên khoảng (0; +∞), đạo hàm của hàm số y = xπ là:
A. y′ = πxπ−1 .
B. y′ = πxπ .
C. y′ = xπ−1 .
D. y′ = π1 xπ−1 .
Câu 11. Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A. ln 6a2 .
B. ln a.
C. ln 32 .
D. ln 23 .
Câu 12. Cho hình chóp đều S .ABCD có chiều cao a, AC = 2a (tham khảo hình bên). Khoảng cách từ B
đến mặt phẳng (S CD) bằng √
√
√
√
A. 2a.
B. 2 3 3 a.
C. 33 a.
D. 22 a.
R
ax + b 2x
Câu 13. Biết a, b ∈ Z sao cho (x + 1)e2x dx = (
)e + C. Khi đó giá trị a + b là:
4
A. 4.
B. 1.
C. 3.
D. 2.
Trang 1/5 Mã đề 001
Câu 14. Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2 + y2 + z2 − 4x − 6y + 2z − 1 = 0.√
√
C. R = 4.
D. R = 15.
A. R = 3.
B. R = 14.
Câu 15. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = −2x4 + 4x2 .
B. y = −x4 + 2x2 .
C. y = x3 − 3x2
.
π
R2
Câu 16. Biết sin 2xdx = ea . Khi đó giá trị a là:
D. y = −x4 + 2x2 + 8.
0
A. ln 2.
B. 0.
C. − ln 2.
D. 1.
Câu 17. Cho mặt cầu (S ) có bán kính bằng R = 5, một hình trụ (T )có hai đường trịn đáy nằm trên mặt
cầu (S ). Thể
√ tích của khối trụ (T ) lớn
√ nhất bằng bao nhiêu. √
√
500π 3
250π 3
125π 3
400π 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
Câu 18. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a < 1 thì a x > ay ⇔ x < y.
B. Nếu a > 0 thì a x > ay ⇔ x < y.
x
y
C. Nếu a > 0 thì a = a ⇔ x = y.
D. Nếu a > 1 thì a x > ay ⇔ x > y.
Câu 19. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x + 1)2 + (y − 2)2 = 125.
B. (x − 5)2 + (y − 4)2 = 125.
C. (x − 1)2 + (y − 4)2 = 125.
D. x = 2.
z
Câu 20. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác nhọn.
B. Tam giác OAB là tam giác cân.
C. Tam giác OAB là tam giác vuông.
D. Tam giác OAB là tam giác đều.
Câu 21. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 5 = 0.
B. x − y + 8 = 0.
C. x − y + 4 = 0.
D. x + y − 8 = 0.
Câu 22. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn.
B. Hai đường thẳng.
C. Một đường thẳng.
D. Parabol.
z+i+1
là số thuần ảo?
z + z + 2i
C. Một đường tròn.
D. Một đường thẳng.
Câu 23. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
A. Một Elip.
B. Một Parabol.
Câu 24. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w =
√ x + iy trên mặt phẳng phức.
√ Để tam giác MNP
√ đều là số phức k là
A. w = 1 +
B. w = 27√− i hoặcw = 27 √
+ i.
√ 27i hoặcw = 1 −√ 27i.
C. w = − 27 − i hoặcw = − 27 + i.
D. w = 1 + 27 hoặcw = 1 − 27.
−2 − 3i
Câu 25. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3
−
2i
√
A. max |z| = 3.
B. max |z| = 1.
C. max |z| = 2.
D. max |z| = 2.
z+i+1
Câu 26. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một đường tròn.
B. Một Elip.
C. Một Parabol.
D. Một đường thẳng.
Câu 27. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. 3π.
C. π.
D. 4π.
Trang 2/5 Mã đề 001
z − z
=2?
Câu 28. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một Elip.
B. Một Parabol.
C. Một đường tròn.
D. Một đường thẳng.
Câu 29. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 8 = 0.
B. x + y − 8 = 0.
C. x + y − 5 = 0.
D. x − y + 4 = 0.
1+i
z
Câu 30. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
25
15
B. S = .
C. S = .
D. S = .
A. S = .
4
2
2
4
√
Câu 31. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 7.
B. max |z| = 6.
C. max |z| = 3.
D. max |z| = 4.
Câu 32. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ tam giác MNP đều
√ là số phức k là
√ z1 , z2 và số phức w√ = x + iy trên mặt phẳng phức. Để
B. w = 1 + √27i hoặcw = 1 − √ 27i.
A. w = −√ 27 − i hoặcw =√− 27 + i.
C. w = 27 − i hoặcw = 27 + i.
D. w = 1 + 27 hoặcw = 1 − 27.
R
Câu 33. Tính nguyên hàm cos 3xdx.
1
1
C. 3 sin 3x + C.
D. − sin 3x + C.
A. −3 sin 3x + C.
B. sin 3x + C.
3
3
Câu 34. Cho a, b là hai số thực dương bất kì. Mệnh đề nào dưới đây đúng?
a
ln a
A. ln( ) =
.
B. ln(ab) = ln a. ln b .
b
ln b
C. ln(ab2 ) = ln a + 2 ln b.
D. ln(ab2 ) = ln a + (ln b)2 .
Câu 35. Tập nghiệm của bất phương trình log 1 (x − 1) ≥ 0 là:
A. [2; +∞).
B. (1; 2].
2
C. (1; 2).
D. (−∞; 2].
Câu 36. Biết f (u)du = F(u) + C Mệnh đề nào dưới đây đúng?
R
R
1
B. f (2x − 1)dx = 2F(2x − 1) + C.
A. f (2x − 1)dx = F(2x − 1) + C .
2
R
R
C. f (2x − 1)dx = F(2x − 1) + C.
D. f (2x − 1)dx = 2F(x) − 1 + C.
√ x
Câu 37. Tìm nghiệm của phương trình 2 x = ( 3) .
A. x = 2.
B. x = −1.
C. x = 1.
D. x = 0.