Kiểm tra LATEX
ĐỀ KIỂM TRA THPT MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001001
Câu 1. Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
A. y = x3 .
B. y = x2 − 2x + 2.
C. y = x3 − 2x2 + 3x + 2.
D. y = −x4 + 3x2 − 2.
Câu 2. Hình nón có bán kính đáy R, đường sinh l thì diện√tích xung quanh của nó√bằng
A. 2πRl.
B. πRl.
C. 2π l2 − R2 .
D. π l2 − R2 .
Câu 3. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Giao điểm của (P)
và trục tung có tọa độ là
A. (0; 1; 0).
B. (0; 5; 0).
C. (0; −5; 0).
D. (0; 0; 5).
ax + b
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
cx + d
A. bc > 0 .
B. ac < 0.
C. ab < 0 .
D. ad > 0 .
x
trên tập xác định của nó là
Câu 5. Giá trị nhỏ nhất của hàm số y = 2
x +1
1
1
A. min y = 0.
B. min y = −1.
C. min y = − .
D. min y = .
R
R
R
R
2
2
Rm
dx
Câu 6. Cho số thực dươngm. Tính I =
theo m?
2
0 x + 3x + 2
m+2
m+2
m+1
2m + 2
A. I = ln(
).
B. I = ln(
).
C. I = ln(
).
D. I = ln(
).
2m + 2
m+1
m+2
m+2
Câu R7. Công thức nào sai?
R
A. R cos x = sin x + C.
B. R a x = a x . ln a + C.
C. e x = e x + C.
D. sin x = − cos x + C.
Câu 4. Cho hàm số y =
Câu 8. Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (2; 3; 1).
B. M ′ (−2; −3; −1).
C. M ′ (2; −3; −1).
D. M ′ (−2; 3; 1).
Câu 9. Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn
3y−2x ≥ log5 (x + y2 )?
A. 17.
B. 13.
C. 18.
D. 20.
Câu 10. Cho khối lăng trụ đứng ABC.A′ B′C ′ √
có đáy ABC là tam giác vuông cân tại A,AB = a. Biết
3
khoảng cách từ A đến mặt phẳng (A′ BC) bằng
a. Tính thể tích của khối lăng trụ ABC.A′ B′C ′
3
√
√
a3 2
a3 2
a3
a3
A.
.
B.
.
C. .
D. .
2
6
6
2
Câu 11. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực đại của đồ thị
hàm số đã cho có tọa độ là
A. (0; −3).
B. (1; −4).
C. (−1; −4).
D. (−3; 0).
R
Câu 12. Biết f (x)dx = sin 3x + C. Mệnh đề nào sau đây là mệnh đề đúng?
cos 3x
cos 3x
A. f (x) = 3 cos 3x.
B. f (x) = −3 cos 3x.
C. f (x) =
.
D. f (x) = −
.
3
3
Câu 13. Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z. Phần thực của z bằng
A. 3.
B. −2.
C. −3.
D. 2.
Trang 1/5 Mã đề 001001
Câu 14. Tổng tất cả các nghiệm của phương trình log2 (6 − 2 x ) = 1 − x bằng
A. 0.
B. 2.
C. 3.
D. 1.
R6
R6
R6
Câu 15. Nếu f (x) = 2 và g(x) = −4 thì ( f (x) + g(x)) bằng
1
1
1
A. 2.
B. −6.
C. −2.
D. 6.
ax + b
Câu 16. Cho hàm số y =
có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị
cx + d
hàm số đã cho và trục hoành là
A. (0 ; 3). .
B. (3; 0 ).
C. (0 ; −2).
D. (2 ; 0).
Câu 17. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A. |z2 | = |z|2 .
B. z + z = 2bi.
C. z · z = a2 − b2 .
D. z − z = 2a.
Câu 18. Cho P = 1 + i + i2 + i3 + · · · + i2017 . Đâu là phương án chính xác?
A. P = 2i.
B. P = 0.
C. P = 1.
D. P = 1 + i.
Câu 19. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 2.
B. 1.
C. 4.
Câu 20. Tính
√ mơ-đun của số phức z√thỏa mãn z(2 − i) + 13i = 1.
√
34
5 34
A. |z| =
.
B. |z| =
.
C. |z| = 34.
3
3
D. 3.
D. |z| = 34.
√
Câu 21. Cho số phức z = (m − 1) + (m + 2)i với m ∈ R. Tập hợp tất các giá trị của m để |z| ≤ 5 là
A. 0 ≤ m ≤ 1.
B. m ≥ 1 hoặc m ≤ 0. C. −1 ≤ m ≤ 0.
D. m ≥ 0 hoặc m ≤ −1.
Câu 22. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mô-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 0.
B. 2.
C. 1.
D. 3.
!2016
!2018
1+i
1−i
Câu 23. Số phức z =
+
bằng
1−i
1+i
A. −2.
B. 2.
C. 0.
D. 1 + i.
2(1 + 2i)
Câu 24. Cho số phức z thỏa mãn (2 + i)z +
= 7 + 8i. Mô-đun của số phức w = z + i + 1 là
1+i
A. 3.
B. 4.
C. 13.
D. 5.
Câu 25. Phần thực của số phức z = 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 là
A. −21008 .
B. 21008 .
C. −22016 .
D. −21008 + 1.
Câu 26. Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + 1 = 0. Tâm của (S ) có
tọa độ là
A. (−1; −2; −3).
B. (2; 4; 6).
C. (1; 2; 3).
D. (−2; −4; −6).
Câu 27. Cho khối lập phương có cạnh bằng 2. Thể tích của khối lập phương đã cho bằng
8
A. 4 .
B. 8 .
C. .
D. 6.
3
Câu 28. Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. (1; 3).
B. (−∞; 1).
C. (3; +∞).
D. (0; 2).
Trang 2/5 Mã đề 001001
Câu 29. Cho hàm số f (x) liên tục trên R. Gọi
R 2 F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4) + G(4) = 4 và F(0) + G(0) = 1. Khi đó 0 f (2x) bằng
3
3
B. .
C. 3 .
D. 6.
A. .
4
2
Câu 30. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (−6; 7).
B. (6; 7).
C. (7; 6).
D. (7; −6).
Câu 31. Phần ảo của số phức z = 2 − 3i là
A. −3.
B. 3 .
C. −2.
D. 2 .
x−2
y−1
z−1
Câu 32. Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d :
=
=
. Gọi
2
2
−3
(P) là mặt phẳng đi qua A và chứa d. Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
1
11
A. 1 .
B. .
C. 5.
D. .
3
3
Câu 33. Cho hình chóp đều S .ABCD có chiều cao a, AC = 2a (tham khảo hình bên).
Khoảng
cách từ B đến mặt phẳng
(S CD) bằng
√
√
√
√
2 3
3
2
A.
a.
B.
a.
C.
a.
D. 2a.
3
3
2
Câu 34. Cho z1 , z2 là hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị của biểu thức
P = |z1 + z√2 |.
√
√
√
3
2
.
B. P = 2.
C. P =
.
D. P = 3.
A. P =
2
2
Câu 35. Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = 1 và z1 +z2 +z3 = 0. Tính A = z21 +z22 +z23 .
A. A = −1.
B. A = 1.
C. A = 1 + i.
D. A = 0.
4
Câu 36. Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến
|z|
điểm biểu!diễn số phức thuộc tập hợp
nào
sau
đây?
!
!
!
1 9
1 5
9
1
B. ; .
C. ; .
D. ; +∞ .
A. 0; .
4
2 4
4 4
4
1
Câu 37. Cho số phức z thỏa mãn
z +
= 3. Tổng giá trị lớn nhất và nhỏ nhất của |z| là
z
√
√
A. 13.
B. 5.
C. 5.
D. 3.
z+1
Câu 38. Cho số phức z , 1 thỏa mãn
là số thuần ảo. Tìm |z| ?
z−1
1
A. |z| = 2.
B. |z| = .
C. |z| = 1.
D. |z| = 4.
2
z
Câu 39. Cho số phức z thỏa mãn z không phải là số thực và ω =
là số thực. Giá trị lớn nhất của
2 + z2
biểu thức
√ M = |z + 1 − i| là √
A. 2 2.
B. 2.
C. 8.
D. 2.
2z − i
Câu 40. Cho số phức z thỏa mãn |z| ≤ 1. ĐặtA =
. Mệnh đề nào sau đây đúng?
2 + iz
A. |A| ≤ 1.
B. |A| ≥ 1.
C. |A| < 1.
D. |A| > 1.
Câu 41. (Sở Nam Định) Tìm mơ-đun của số phức z biết z − 4 = (1 + i)|z| − (4 + 3z)i.
1
A. |z| = 1.
B. |z| = .
C. |z| = 4.
D. |z| = 2.
2
Câu 42. Cho số√phức z thỏa mãn |z| = 1. Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
A. max T = 2 5.
B. P = −2016.
C. P = 1.
D. P = 2016.
Câu 43. Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + 1 + 3i −
z
i = 0. Tính S = 2a + 3b.
A. S = −5.
B. S = 6.
C. S = 5.
D. S = −6.
Trang 3/5 Mã đề 001001
−a = (4; −6; 2). Phương
Câu 44. Cho đường thẳng ∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương →
trình tham số của đường thẳng ∆ là
A. x = −2 + 2ty = −3tz = 1 + t.
B. x = 4 + 2ty = −3tz = 2 + t.
C. x = 2 + 2ty = −3tz = −1 + t..
D. x = −2 + 4ty = −6tz = 1 + 2t.
3
Câu 45. Tìm đạo hàm của hàm số: y = (x2 + 1) 2
1
A. 3x(x2 + 1) 2 .
1
3
B. (2x) 2 .
2
1
3 2
C. (x + 1) 2 .
2
1
3 −
D. x 4 .
4
√
Câu
√ 46. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a 2, OD =
a 3. Tam giác SAB nằm trên mặt phẳng vng góc với mặt phẳng đáy. Gọi O là giao điểm của AC và
BD. Tính khoảng cách d từ điểm O đến mặt phẳng (S AB).
√
A. d = a 3.
√
B. d = a 2.
C. d = a.
D. d = 2a.
Câu 47. Cho hàm số y = f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong
hình vẽ bên. Điểm cực tiểu của đồ thị hàm số y = f (x) là
A. x = −2.
B. M(−2; −4).
C. M(1; −2).
D. x = 1.
Câu 48. Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3 (x2 − 5x + m) >
log3 (x − 2) có tập nghiệm chứa khoảng (2; +∞). Tìm khẳng định đúng.
A. S = (7; +∞).
B. S = (−∞; 4).
C. S = (−∞; 5].
D. S = [6; +∞).
Câu 49. Biết rằng phương trình log22 x − 7log2 x + 9 = 0 có 2 nghiệm x1 , x2 . Giá trị của x1 x2 bằng
A. 512.
B. 9.
C. 128.
D. 64.
Câu 50. Cho hình phẳng D giới hạn bởi các đường y = (x − 2)2 , y = 0, x = 0, x = 2. Khối tròn xoay tạo
thành khi quay D quạnh trục hồnh có thể tích V bằng bao nhiêu?
A. V = 32π.
B. V =
32π
.
5
C. V =
32
.
5
D. V =
32
.
5π
Trang 4/5 Mã đề 001001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001001