Tải bản đầy đủ (.pdf) (5 trang)

Đề kiểm tra thpt môn toán (651)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (125.13 KB, 5 trang )

Kiểm tra LATEX

ĐỀ KIỂM TRA THPT MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001

Câu 1. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (−2; 0; 0).
B. (0; 2; 0).
C. (0; −2; 0).
D. (0; 6; 0).
Câu 2. Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (−2; 3; 1).
B. M ′ (2; −3; −1).
C. M ′ (2; 3; 1).
D. M ′ (−2; −3; −1).
Câu 3. Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
A. 6πR3 .
B. πR3 .
C. 2πR3 .
D. 4πR3 .
Câu 4. Cho hình lập phương ABCD.A′ B′C ′ D′ . Tính góc giữa hai đường thẳng AC và BC ′ .
A. 360 .
B. 450 .
C. 600 .
D. 300 .
Câu 5. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − 5 = 0. Bán kính R


của (S) bằng bao nhiêu?


C. R = 21.
D. R = 9.
A. R = 3.
B. R = 29.
Câu 6. Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ có cực tiểu mà khơng có
cực đại
A. m > 1.
B. m < 1.
C. m ≤ 1.
D. m ≥ 1.
Câu 7. Cho hìnhqchóp đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng b. Thể tích của khối chóp là:


a2 b2 − 3a2
a2 3b2 − a2
A. VS .ABC =
.
B. VS .ABC =
.
√ 2 12
√ 12
3a b
3ab2
C. VS .ABC =
.
D. VS .ABC =
.

12
12
Câu 8. Số nghiệm của phương trình 9 x + 5.3 x − 6 = 0 là
A. 0.
B. 2.
C. 4.
D. 1.
Câu 9. Cho hàm số y = f (x) xác định trên tập R và có f ′ (x) = x2 − 5x + 4. Khẳng định nào sau đây
đúng?
A. Hàm số đã cho nghịch biến trên khoảng (3; +∞).
B. Hàm số đã cho nghịch biến trên khoảng (1; 4).
C. Hàm số đã cho đồng biến trên khoảng (1; 4).
D. Hàm số đã cho đồng biến trên khoảng (−∞; 3).
Câu 10. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực đại của đồ thị
hàm số đã cho có tọa độ là
A. (−3; 0).
B. (−1; −4).
C. (1; −4).
D. (0; −3).
Câu 11. Cho cấp số nhân (un ) với u1 = 3 và công bội q = −2. Số hạng thứ 7 của cấp số nhân đó là
A. 384.
B. −192.
C. 192.
D. −384.







z


= 1. Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường
Câu 12. Cho số phức zthỏa mãn



i + 2

trịn (C). √
Tính bán kính rcủa đường trịn (C).

A. r = 3.
B. r = 1.
C. r = 5.
D. r = 2.
Câu 13. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) <
log4 y + log3 (684x2 + 1216y2 + 720y)?
A. 56.
B. 76.
C. 48.
D. 64.
Trang 1/5 Mã đề 001




Câu 14. Trong không gian Oxyz, cho hai mặt phẳng
√ (P) và (Q) lần lượt có hai vectơ pháp tuyến là nP và

3


→ −

n→
Góc giữa hai mặt phẳng (P) và (Q) bằng.
Q . Biết cosin góc giữa hai vectơ nP và nQ bằng −
2


A. 60 .
B. 45 .
C. 30◦ .
D. 90◦ .
Câu 15. Tính đạo hàm của hàm số y = 5 x
5x
A. y′ = x.5 x−1 .
B. y′ =
.
C. y′ = 5 x ln 5.
D. y′ = 5 x .
ln 5
Câu 16. Tính thể tích V của khối trịn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2 và
trục hoành quanh trục Ox.
22π

4
512π
.

B. V =
.
C. V =
.
D. V = .
A. V =
15
3
2
5
Câu 17. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 2.
B. 1.
C. 3.
D. 4.
Câu 18. Cho số phức z1 = 3 − 2i. Khi đó số phức w = 2z − 3z là
A. 11 + 2i.
B. −3 − 10i.
C. −3 + 2i.

D. −3 − 2i.

Câu 19. Tìm số phức liên hợp của số phức z = i(3i + 1).
A. z = −3 + i.
B. z = 3 − i.
C. z = 3 + i.


D. z = −3 − i.

Câu 20. Cho số phức z = 3 − 2i.Tìm phần thực và phần ảo của số phức z.
A. Phần thực là 3 và phần ảo là 2i.
B. Phần thực là −3 và phần ảo là−2.
C. Phần thực là−3 và phần ảo là −2i.
D. Phần thực là3 và phần ảo là 2.


Câu 21. Cho số phức z = (m − 1) + (m + 2)i với m ∈ R. Tập hợp tất các giá trị của m để |z| ≤ 5 là
A. m ≥ 0 hoặc m ≤ −1. B. 0 ≤ m ≤ 1.
C. −1 ≤ m ≤ 0.
D. m ≥ 1 hoặc m ≤ 0.
4 − 2i (1 − i)(2 + i)
+

Câu 22. Phần thực của số phức z =
2−i
2 + 3i
29
29
11
11
A. − .
B.
.
C. .
D. − .
13

13
13
13
Câu 23. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. −10.
B. −9.
C. 9.
D. 10.
1
1
25
=
+
Câu 24. Cho số phức z thỏa
. Khi đó phần ảo của z bằng bao nhiêu?
z
1 + i (2 − i)2
A. 17.
B. −17.
C. −31.
D. 31.
Câu 25. Cho số phức z thỏa mãn z(1 + 3i) = 17 + i. Khi√đó mơ-đun của số phức√w = 6z − 25i là
A. 13.
B. 5.
C. 2 5.
D. 29.
Câu 26. Cho hàm số f (x) = cosx + x. Khẳng định nào dưới đây đúng?
R
R

x2
x2
A. f (x) = sinx +
+ C.
B. f (x) = −sinx +
+ C.
2
2
R
R
C. f (x) = sinx + x2 + C.
D. f (x) = −sinx + x2 + C.
Câu 27. Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0 ( m là




số


thực). Có bao


tham
nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1 , z2 thỏa mãn


z1



×