TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Giảm đi n lần.
B. Tăng lên n lần.
C. Khơng thay đổi.
D. Tăng lên (n − 1) lần.
!
3n + 2
2
Câu 2. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử của
n+2
S bằng
A. 3.
B. 5.
C. 4.
D. 2.
Câu 3. Cho hình chóp S .ABCD có
√ đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm của
là
AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp S .ABCD
√
√
4a3
2a3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 4. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 10.
C. P = −10.
D. P = 21.
Câu 5. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vơ nghiệm.
C. 3.
D. 1.
Câu 6. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m , 0.
D. m < 0.
Câu 7. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
.
B. a 6.
C. a 3.
D.
A. 2a 6.
2
Câu 8. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −5.
C. −9.
D. −15.
Câu 9. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 0.
C. 22016 .
D. e2016 .
Câu 10. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng ; 1 .
3
3
Câu 11. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 2).
D. (−∞; 0) và (2; +∞).
[ = 60◦ , S O
Câu 12. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng
√
2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
Câu 13. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:
√
3
3
3
3
A. .
B.
.
C.
.
D.
.
4
12
2
4
C. (0; 2).
Trang 1/10 Mã đề 1
Câu 14. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > −1.
C. m > 0.
Câu 15. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 12.
D. m > 1.
C. 8.
D. 30.
Câu 16. [12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 = 20 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
2n + 1
Câu 17. Tính giới hạn lim
3n + 2
2
3
1
A. .
B. 0.
C. .
D. .
3
2
2
Câu 18. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
!
1
1
1
1
A. − ; +∞ .
B.
; +∞ .
C. −∞; − .
D. −∞; .
2
2
2
2
log(mx)
Câu 19. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m = 4.
C. m < 0 ∨ m > 4.
D. m ≤ 0.
x−1
Câu 20. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB
√
√ có độ dài bằng
A. 2 2.
B. 2.
C. 2 3.
D. 6.
√
√
x
+
3
+
6−x
Câu 21.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
√
√
√
A. 2 3.
B. 3 2.
C. 3.
D. 2 + 3.
2n + 1
Câu 22. Tìm giới hạn lim
n+1
A. 1.
B. 2.
C. 0.
D. 3.
x
x
x
Câu 23. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 24. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.
D. {3; 4}.
x+1
Câu 25. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 3.
B. .
C. .
D. 1.
4
3
Câu 26. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 22.
√
√
Câu 27. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
A. m ≥ 0.
B. 0 ≤ m ≤ .
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4
4
Câu 28. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.
C. 8.
D. 4.
2
2
Câu 29. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
12
6
24
Trang 2/10 Mã đề 1
x−2
Câu 30. Tính lim
x→+∞ x + 3
2
A. − .
B. −3.
3
Câu 31. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R \ {1}.
C. 2.
D. 1.
C. D = (0; +∞).
D. D = R.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
√
√
2 11 − 3
9 11 − 19
C. Pmin =
.
D. Pmin =
.
3
9
Câu 32. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x +
√ y.
√
18 11 − 29
9 11 + 19
A. Pmin =
. B. Pmin =
.
21
9
Câu 33. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.
D. {3; 4}.
Câu 34. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 − 2; m = 1.
1 − 2n
bằng?
Câu 35. [1] Tính lim
3n + 1
2
2
1
B. .
C. − .
D. 1.
A. .
3
3
3
x2 − 5x + 6
Câu 36. Tính giới hạn lim
x→2
x−2
A. 5.
B. −1.
C. 1.
D. 0.
Câu 37. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3 √
√
2 3
A. 2.
B. 1.
C.
.
D. 3.
3
Câu 38. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Chỉ có (II) đúng.
C. Cả hai đều sai.
Câu 39. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. +∞.
B. 1.
C. 0.
D. Cả hai đều đúng.
un
bằng
vn
D. −∞.
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
+ m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 1.
C. 2.
D. 0.
Câu 40. [4] Xét hàm số f (t) =
9t
Câu 41. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
a b2 + c2
c a2 + b2
abc b2 + c2
b a2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Trang 3/10 Mã đề 1
Câu 42. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
a
5a
8a
.
B.
.
C. .
D.
.
A.
9
9
9
9
Câu 43. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng
√
√
√
√
2a 3
a 3
a 3
A. a 3.
B.
.
C.
.
D.
.
2
2
3
d = 30◦ , biết S BC là tam giác đều
Câu 44. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
13
16
26
Câu 45. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.
D. Vơ nghiệm.
Câu 46. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.
D. 4 mặt.
2
x − 3x + 3
đạt cực đại tại
Câu 47. Hàm số y =
x−2
A. x = 2.
B. x = 3.
C. x = 1.
D. x = 0.
1
Câu 48. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 49. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
A.
.
B. .
C. a.
D. .
2
2
3
2
Câu 50. Tổng diện tích các mặt của một khối lập phương bằng 96cm . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 84cm3 .
C. 91cm3 .
D. 48cm3 .
Câu 51. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B.
.
C. 7.
D. .
2
2
3
2
Câu 52. Cho hàm số y = −x + 3x − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 53. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 4).
C. (2; 4; 3).
D. (1; 3; 2).
Câu 54. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 55. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là
√
3
a 3
a3
a3 3
3
A.
.
B.
.
C. a .
D.
.
6
3
2
Trang 4/10 Mã đề 1
Câu 56. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a3 3
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
24
8
24
48
Câu 57. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là 4, phần ảo là −1.
√3
4
Câu 58. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
5
2
A. a 3 .
B. a 3 .
C. a 8 .
D. a 3 .
Câu 59. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 144.
C. 4.
D. 2.
Câu 60. Tứ diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {3; 3}.
D. {5; 3}.
Câu 61. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
15
18
9
6
Câu 62. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 6%.
C. 0, 7%.
D. 0, 5%.
√
Câu 63. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
5
5
A.
;3 .
B. (1; 2).
C. 2; .
D. [3; 4).
2
2
Câu 64.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
C.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
D.
Câu 65. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 66. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 67. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log π4 x.
√
C. y = loga x trong đó a = 3 − 2.
D. y = log 14 x.
Câu 68. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình tam giác.
C. Hình lăng trụ.
D. Hình chóp.
Trang 5/10 Mã đề 1
Câu 69. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B. a 6.
C.
.
D.
.
2
6
3
2n − 3
Câu 70. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. −∞.
C. 1.
D. 0.
x+2
bằng?
Câu 71. Tính lim
x→2
x
A. 3.
B. 2.
C. 1.
D. 0.
Câu 72. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.
B. f (x) liên tục trên K.
D. f (x) xác định trên K.
Câu 73. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 8π.
C. V = 4π.
D. 32π.
Câu 74. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a
√
√
a3 15
a3
a3 15
a3 5
A.
.
B.
.
C.
.
D.
.
25
3
5
25
Câu 75. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√
√ S .ABCD là
3
3
√
a3 3
a
a
2
3
A.
.
B. a3 3.
.
D.
.
C.
4
2
2
Câu 76. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B. 27.
C.
.
D. 12.
2
!2x−1
!2−x
3
3
Câu 77. Tập các số x thỏa mãn
≤
là
5
5
A. (−∞; 1].
B. [1; +∞).
C. [3; +∞).
D. (+∞; −∞).
√
Câu 78. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vô số.
Câu 79. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
100.1, 03
A. m =
triệu.
B. m =
triệu.
3
(1, 12)3 − 1
100.(1, 01)3
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
1
Câu 80. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3.
B. m = −3, m = 4.
C. −3 ≤ m ≤ 4.
D. m = 4.
Trang 6/10 Mã đề 1
Câu 81. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2
A. 6.
B. 4.
3
C. 2.
Z
6
3x + 1
. Tính
1
f (x)dx.
0
D. −1.
Câu 82. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.
D. 4 mặt.
x−2 x−1
x
x+1
Câu 83. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−∞; −3].
D. (−3; +∞).
2x + 1
Câu 84. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. .
C. −1.
D. 1.
2
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 85. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là
√
√
√
√
a3 3
a3 2
a3 3
2
A. 2a 2.
B.
.
C.
.
D.
.
12
24
24
log(mx)
Câu 86. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0.
Câu 87. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 2.
C. 3.
D. 5.
Câu 88. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.
B. 0.
Câu 89. Hàm số nào sau đây khơng có cực trị
1
B. y = x3 − 3x.
A. y = x + .
x
C. 1.
C. y = x4 − 2x + 1.
Câu 90. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.
B. 4.
D. 2.
C. 2.
D. y =
1
3|x−1|
x−2
.
2x + 1
= 3m − 2 có nghiệm duy
D. 1.
Câu 91. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục thực.
√
Câu 92. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.
D. 3 nghiệm.
Câu 93. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
1
A. − .
B.
.
3
3
!n
5
C.
.
3
!n
4
D.
.
e
Trang 7/10 Mã đề 1
Câu 94. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.
D. {5; 3}.
Câu 95. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 4.
C. 6.
D. 3.
Câu 96. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
6
12
Câu 97. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ là
√
√ Thể tích khối chóp S 3.ABC
a 3
a3 3
a3 2
a3 3
.
B.
.
C.
.
D.
.
A.
4
12
6
12
Câu 98. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 5 mặt.
D. 4 mặt.
!
x+1
Câu 99. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016
A. 2017.
B.
.
C.
.
D.
.
2018
2018
2017
Câu 100. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 14 năm.
D. 10 năm.
Câu 101. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 8.
C. 30.
D. 12.
Câu 102. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
C. − < m < 0.
D. m ≥ 0.
A. m ≤ 0.
B. m > − .
4
4
tan x + m
nghịch biến trên khoảng
Câu 103. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 104. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.
C. 30.
D. 20.
Câu 105. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.
B. Khơng có câu nào C. Câu (II) sai.
sai.
D. Câu (III) sai.
Trang 8/10 Mã đề 1
2
Câu 106. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
B. √ .
C. 3 .
A. 2 .
e
e
2 e
Câu 107. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln 2.
B. y0 =
.
C. y0 = x
.
ln 2
2 . ln x
Câu 108. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−∞; 1).
C. (1; +∞).
D.
1
.
2e3
D. y0 = 2 x . ln x.
D. (−1; 1).
Câu 109. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
B. 2e + 1.
C. 3.
D. 2e.
A. .
e
Câu 110. √
Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
√
A. |z| = 17.
B. |z| = 17.
C. |z| = 10.
D. |z| = 10.
Câu 111. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 2.
C. 1.
D. 3.
d = 120◦ .
Câu 112. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 3a.
A. 4a.
B. 2a.
C.
2
Câu 113. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 10.
C. 27.
D. 3.
Câu 114. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
C. |z| = 5.
A. |z| = 5.
B. |z| = 2 5.
D. |z| =
√4
5.
Câu 115. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là
√
3
3
3
3
8a 3
a 3
4a 3
8a 3
.
B.
.
C.
.
D.
.
A.
3
9
9
9
Câu 116. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
8
4
12
√
Câu 117.√ Xác định phần ảo của số phức z = ( 2 + 3i)2
√
A. −6 2.
B. 7.
C. −7.
D. 6 2.
Câu 118. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√ chóp S .ABMN là 3 √
√
√
3
4a 3
a 3
2a3 3
5a3 3
A.
.
B.
.
C.
.
D.
.
3
2
3
3
1
Câu 119. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 ≤ m ≤ −1.
C. (−∞; −2] ∪ [−1; +∞). D. −2 < m < −1.
Câu 120. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
Trang 9/10 Mã đề 1
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.
B. Cả hai câu trên đúng. C. Cả hai câu trên sai.
Câu 121. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối lập phương.
D. Chỉ có (II) đúng.
D. Khối tứ diện đều.
Câu 122. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 123. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC
√
√ với đáy và S C = a 3. 3Thể
√là
3
3
a 3
2a 6
a 3
a3 6
A.
.
B.
.
C.
.
D.
.
4
9
2
12
π
Câu 124. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
B. T = 2 3.
C. T = 4.
D. T = 2.
A. T = 3 3 + 1.
3a
Câu 125. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a 2
a
2a
.
B. .
C.
.
D. .
A.
3
3
3
4
Câu 126. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối lập phương.
D. Khối 12 mặt đều.
Câu 127. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
√
√
Câu 128. Phần thực và√phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt√l
√
A. Phần thực là 1√− 2, phần ảo là − √3.
B. Phần thực là √2, phần ảo là 1 − √3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 129. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 6.
C. 5.
2
D. −6.
[ = 60◦ , S O
Câu 130. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng
√
2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
3. A
4. A
5. A
6.
7.
B
9.
B
C
C
8. A
D
10.
11.
D
12.
B
13.
D
14.
B
15.
B
16. A
17. A
18. A
19.
B
20.
21.
B
22.
23.
D
C
B
24.
D
25.
B
26.
C
27.
B
28.
C
29.
B
30.
31.
D
D
32.
C
33.
C
34.
35.
C
36.
B
38.
B
37. A
39.
C
40.
41. A
D
44.
45. A
B
46.
47.
C
48.
49.
C
50. A
51.
D
C
D
52. A
53. A
54. A
55.
D
56. A
57.
D
58.
D
60.
B
62.
C
63. A
C
64. A
65.
66. A
67. A
68.
C
42. A
43.
59.
D
B
69.
1
B
C
70.
72.
D
D
76. A
B
78.
79.
81.
D
80.
B
84. A
86.
B
74. A
B
75.
77.
71.
B
83.
C
85.
C
87.
C
C
B
88.
D
89.
90.
D
91.
B
93.
B
92.
B
94.
96.
D
95.
C
B
98.
D
D
97.
B
99.
B
100.
B
101.
102.
B
103.
B
105.
B
104.
C
106. A
C
107. A
108.
D
109.
110.
D
111.
112.
B
113.
C
114.
C
D
115.
D
B
116.
B
117.
118.
B
119.
120.
B
121.
D
123.
D
122.
124.
D
B
125. A
C
126. A
128.
D
127.
129. A
C
130. A
2
B