Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt (441)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.36 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1


Câu 1. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 62.
D. 64.
Câu 2. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng


20 3
14 3
.
B.
.
C. 8 3.
D. 6 3.
A.


3
3
2
3
7n − 2n + 1
Câu 3. Tính lim 3
3n + 2n2 + 1
2
7
D. - .
A. 0.
B. 1.
C. .
3
3
2

2

sin x
Câu 4.
+ 2cos x lần lượt√là
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số
√ f (x) = 2
A. 2 và 3.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 2 2.
! x3 −3mx2 +m
1

nghịch biến trên khoảng
Câu 5. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
(−∞; +∞)
A. m = 0.
B. m , 0.
C. m ∈ (0; +∞).
D. m ∈ R.

x2 + 3x + 5
Câu 6. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. .
C. 0.
D. 1.
4
4
Câu 7. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (0; −2).
D. (1; −3).

Câu 8. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9

13
23
5
A.
.
B.
.
C. −
.
D. − .
25
100
100
16
Câu 9. Cho khối chóp S .ABC√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
2a 6
a 3
a3 3
a3 6
A.
.
B.
.
C.
.

D.
.
9
2
4
12
Câu 10. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 11. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 5.

C. 2.

D. 4.

Câu 12. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
Trang 1/10 Mã đề 1



(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (I) đúng.

C. Cả hai câu trên sai.

Câu 13. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R.
C. D = R \ {1; 2}.

D. Chỉ có (II) đúng.

2

Câu 14. Tính lim

x→+∞

x−2
x+3

A. 1.
Câu 15. Tính lim
x→1

A. −∞.

x3 − 1

x−1

2
B. − .
3

B. +∞.

D. D = (−2; 1).

C. 2.

D. −3.

C. 3.

D. 0.

x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
C.
.
D.
.
2017
2018
!


Câu 16. [3] Cho hàm số f (x) = ln 2017 − ln
A.

4035
.
2018

B. 2017.

Câu 17. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −e2 .
C. −2e2 .
D. 2e4 .
d = 60◦ . Đường chéo
Câu 18. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
2a3 6
a3 6

3
A.
.
B.
.
C. a 6.
.
D.
3
3
3
Câu 19. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 18 tháng.
C. 17 tháng.
D. 16 tháng.


Câu 20. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt l √

A. Phần thực là √2, phần ảo là 1 − √
3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
d = 120◦ .

Câu 21. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 3a.
C. 2a.
D. 4a.
2
Câu 22. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [1; 2].
C. [−1; 2).

D. (−∞; +∞).

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 23. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 2
a3 3
a3 3
2
A.
.
B.

.
C. 2a 2.
D.
.
24
24
12
Câu 24. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng



2a 3
a 3
a 3
A.
.
B.
.
C.
.
D. a 3.
2
2
3
Trang 2/10 Mã đề 1



Câu 25. Tính lim
A. −∞.

2n − 3
bằng
+ 3n + 1
B. +∞.

2n2

C. 1.

D. 0.

Câu 26. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Câu (II) sai.

Câu 27. Khối lập phương thuộc loại
A. {3; 3}.
B. {4; 3}.

C. Câu (III) sai.

D. Khơng có câu nào

sai.

C. {5; 3}.

D. {3; 4}.

x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 28. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

1
Câu 29. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. .
3
3


C. −3.

Câu 30. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. R.
C. (2; +∞).

D. 3.

D. (−∞; 1).

Câu 31. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
8
4
2
2

Câu 32. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
A. 3 .

B.
.
C. √ .
3
e
2e
2 e
Câu 33. [1] Tính lim
x→3

A. −∞.

x−3
bằng?
x+3
B. 0.

C. +∞.

D.

1
.
e2

D. 1.

Câu 34. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1

A. −e.
B. − 2 .
C. − .
e
2e

1
D. − .
e

Câu 35. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −5.
C. −6.

D. 6.

Câu 36. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

A. 5.
B. 5.
C. 25.

D.

Câu 37. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình tam giác.
C. Hình chóp.


D. Hình lập phương.

2



1
.
5

Trang 3/10 Mã đề 1


Câu 38.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
( f (x) + g(x))dx =

A.
Z
C.

( f (x) − g(x))dx =

f (x)dx +

Z

g(x)dx.


B.

Z
f (x)dx −

Z
g(x)dx.

D.

f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

Câu 39. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
a
5a
2a
.
B. .
C.
.
D.
.
A.

9
9
9
9
Câu 40. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. 2.
D. Vô nghiệm.
Câu 41. Phát biểu nào sau đây là sai?
A. lim qn = 0 (|q| > 1).
C. lim un = c (un = c là hằng số).

1
= 0.
n
1
D. lim k = 0.
n

B. lim

1 − 2n
bằng?
Câu 42. [1] Tính lim
3n + 1
2
1
2
A. .

B. 1.
C. .
D. − .
3
3
3
3
2
Câu 43. Cho hàm số y = x − 3x + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 3.
C. −3.
D. 0.
Câu 44. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 9.

D. 13.

Câu 45. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng

A. 8 3.
B. 8 2.
C. 7 3.
D. 16.
Câu 46. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =

log4 (x2 + y2 )?
A. 3.
B. Vô số.
C. 1.
D. 2.
Câu 47. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. √ .
B. .
n
n

C.

n+1
.
n

Câu 48.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
A.
.
B.
.
C.

.
4
12
2
√3
4
Câu 49. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5
2
A. a 8 .
B. a 3 .
C. a 3 .

D.

sin n
.
n

D.

3
.
4
7

D. a 3 .

Câu 50. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai

quyển sách cùng một môn nằm cạnh nhau là
1
9
2
1
A. .
B.
.
C. .
D.
.
5
10
5
10
log 2x
Câu 51. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 2 ln 2x
1
1 − 4 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =

.
3
x
x ln 10
2x ln 10
2x3 ln 10
Trang 4/10 Mã đề 1


Câu 52. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 20.

C. 12.

D. 30.

d = 300 .
Câu 53. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V √của khối lăng trụ đã cho.


a3 3
3a3 3
3
3
A. V = 6a .
B. V =
.

C. V = 3a 3.
D. V =
.
2
2
Câu 54. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 55. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

2
2
2
a 2
11a
a2 7
a 5
.
B.
.
C.
.

D.
.
A.
16
4
32
8
Câu 56. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.

A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Câu 57. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là


3
a 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.

D.
.
12
6
12
4
Câu 58. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
B. 7.
C. 5.
D. .
A.
2
2
Câu 59. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 20.

C. 12.

D. 8.

Câu 60. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5

a3 5
A.
.
B.
.
C.
.
D.
.
6
12
12
4
Câu 61. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 62. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
2
3

D. V = 3S h.

x2

Câu 63. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 1.
C. M = e, m = 0.
D. M = , m = 0.
e
e
1
Câu 64. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (1; +∞).
C. (−∞; 1) và (3; +∞). D. (1; 3).
Câu 65. Tìm giới hạn lim
A. 0.

2n + 1
n+1
B. 3.

C. 1.

D. 2.
Trang 5/10 Mã đề 1


Câu 66. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;

tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√ S .ABCD là

3
3
3

a 3
a 3
a 2
C.
A.
.
B. a3 3.
.
D.
.
4
2
2
Câu 67. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 91cm3 .
D. 64cm3 .
Câu 68. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vơ nghiệm.

C. 2 nghiệm.

D. 3 nghiệm.

Câu 69. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −2.
C. m = −1.

D. m = 0.

Câu 70. [2D1-3] Tìm giá trị của tham số m để hàm số y = x − mx + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. m ≥ 3.
C. −3 ≤ m ≤ 3.
D. −2 ≤ m ≤ 2.
3

2

Câu 71. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; 1).
C. (1; +∞).

D. (−∞; −1).

Câu 72. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.

C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số cạnh của khối chóp bằng 2n.
Câu 73. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 − 2; m = 1.
−2
C. M = e + 1; m = 1.
D. M = e−2 + 2; m = 1.
log 2x

Câu 74. [3-1229d] Đạo hàm của hàm số y =
x2
1
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
.
C. y0 = 3
.
D. y0 =
.
A. y0 =
.
B. y0 = 3
3
x
x ln 10
2x ln 10
2x3 ln 10




x=t




Câu 75. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2

C. (x + 3) + (y + 1) + (z − 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
!
!
!
x
4
1
2
2016
Câu 76. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T =
.
C. T = 1008.
D. T = 2017.
2017
log(mx)
Câu 77. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất

log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m ≤ 0.
Câu 78. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 40a3 .
C. 20a3 .
D. 10a3 .
3
Trang 6/10 Mã đề 1



Câu 79. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 64.
C. 63.
D. 62.
Câu 80. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.
Câu 81. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là

A. 3.
B. 5.
C. 1.

D. 2.

Câu 82. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Chỉ có (II) đúng.

C. Cả hai đều sai.

D. Cả hai đều đúng.

Câu 83. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
C. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a

D. lim+ f (x) = lim− f (x) = a.
x→a


x→a

Câu 84. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 85. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Một mặt.
C. Hai mặt.

D. Ba mặt.

Câu 86. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
.
B. √
.
C. 2
.
D. √
.
A. √
2

a +b
a2 + b2
a2 + b2
2 a2 + b2
[ = 60◦ , S O
Câu 87. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng


a 57
2a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
19
19
17
!2x−1
!2−x
3
3
Câu 88. Tập các số x thỏa mãn



5
5
A. (−∞; 1].
B. [1; +∞).
C. [3; +∞).
D. (+∞; −∞).
Câu 89. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (1; 0; 2).
C. ~u = (3; 4; −4).
D. ~u = (2; 1; 6).
Trang 7/10 Mã đề 1


x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham

x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2).
C. (−∞; 2].
D. (2; +∞).
Câu 90. [4-1213d] Cho hai hàm số y =

Câu 91. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.
C. 9 cạnh.
D. 10 cạnh.
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 92. Cho I =

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 4.
C. P = 28.

D. P = −2.
Câu 93. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Khơng có.
C. Có một.
D. Có hai.
Câu 94. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
.
D. 5.
B. 68.
C.
A. 34.
17
Câu 95. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
B. lim qn = 1 với |q| > 1.
1
1
D. lim k = 0 với k > 1.
C. lim √ = 0.
n
n
1

. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = ey + 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.

Câu 96. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.

2x + 1
x→+∞ x + 1
B. 1.

Câu 97. Tính giới hạn lim

1
.
2
Câu 98. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
A. 2.

C.

D. −1.


Câu 99. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. 2.
B. −2.
C. .
D. − .
2
2
Câu 100. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. Cả ba mệnh đề.

C. (I) và (II).

D. (I) và (III).
Trang 8/10 Mã đề 1


Câu 101. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích√khối chóp S .ABMN là √



a3 3
4a3 3
5a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Câu 102. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 5 mặt.
D. 6 mặt.
Câu 103. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 10.

C. 6.

D. 12.


Câu 104. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 24.
C. 21.
D. 23.
Câu 105. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 70, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 20, 128 triệu đồng.
Câu 106. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 107. Tính thể tích khối lập √
phương biết tổng diện tích tất cả các mặt bằng 18.
C. 27.
D. 9.
A. 8.
B. 3 3.
Câu 108. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

C. Khối 12 mặt đều.


D. Khối bát diện đều.

Câu 109. Giá trị của lim (3x − 2x + 1)
x→1
A. +∞.
B. 3.

C. 2.

D. 1.

2

Câu 110. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
20
10
40
20
C50
.(3)20
C50
.(3)40
C50
.(3)10
C50
.(3)30
A.

.
B.
.
C.
.
D.
.
450
450
450
450
Câu 111. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối lập phương.
D. Khối bát diện đều.
5
Câu 112. Tính lim
n+3
A. 1.
B. 3.
C. 0.
D. 2.
Câu 113. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a =
.
C. log2 a = loga 2.

D. log2 a =
.
log2 a
loga 2
Câu 114. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3
a3 3
3
A. a .
B.
.
C.
.
D.
.
3
6
2
Trang 9/10 Mã đề 1


Câu 115. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 1.

D. 22016 .
Câu 116. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?
!
1
B. Hàm số nghịch biến trên khoảng (1; +∞).
A. Hàm số nghịch biến trên khoảng −∞; .
!3
!
1
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
Câu 117. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD là

4a3 3
a3
2a3 3
a3
.
B.
.
C.
.
D.
.
A.

6
3
3
3
Câu 118. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≤ .
D. m ≥ .
4
4
4
4
x+3
Câu 119. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 2.
C. Vô số.
D. 1.

Câu 120. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng




a 38
3a 38
3a 58
3a
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 121. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Hai mặt.
C. Ba mặt.
D. Bốn mặt.
1
Câu 122. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. −1.
C. 2.

D. 1.
0 0 0 0
Câu 123.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
7
3
2
2
8
Câu 124. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 81.
C. 64.
D. 96.


Câu 125. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2
.
D.
.
A. a 2.
B. 2a 2.
C.
2
4
Câu 126. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. 3n3 lần.
D. n2 lần.
Câu 127. [4-1246d] Trong tất cả
√ các số phức z thỏa mãn√|z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 1.
B. 5.
C. 3.
D. 2.
Câu 128. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị

của a + 2b bằng
7
5
A. 9.
B. .
C. .
D. 6.
2
2
Trang 10/10 Mã đề 1


Câu 129.
định nào sau đây là sai?
!0
Z Các khẳng
Z
Z
A.
f (x)dx = f (x).
B.
k f (x)dx = k
f (x)dx, k là hằng số.
Z
Z
Z
Z
C.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Câu 130. Tính lim
x→2
A. 2.

x+2
bằng?
x
B. 3.

C. 1.

D. 0.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

3.

4.


5. A
C

8.

9.

D

10. A

11.

D

12. A

B

16.

B

19.

D

C


20.

C

22.

23. A

24.

25.

D

D

18.

21. A

27.

C

14. A
C

15.
17.


C

6. A

7.

13.

D

2.

C

D
C

26.

B

28.

29. A

D
B

30. A


31.

32.

C

D

33.

B

34.

C

35.

B

36.

C

37.

B

38.


39. A

40.

41. A

42.

43.

44.

C

45.

D

C
D
B

46.

47.

C

48. A


49.

C

50.

51.

B

B

D
B

52.

53.

D

54.

55.

D

56.

C

B
C

57.

C

58.

D

59.

C

60.

C

61.

C

62.

C

63.

C


64.

C

65.

D

66.

C

67.

D

68.

C

1


69.

70.

B
B


74.

75.

D

77. A

C

78.

C

D

80. A

81.

D

82.

D

86. A

87.


B

88.

89.

B

90. A

91.

D

92.

93.

D

94.

B

B
B
C

96. A


97. A
99.

B

84.

B

85. A

95.

B

76.

79.
83.

D

72.

71. A
73.

C


B

101. A

98.

C

100.

C

102. A

103.

D

104. A

105.

D

106.

D

108.


D

107.

B

109.
111.

C

110. A

B

112.

113.

D

C

114.

D

115.

B


116.

C

117.

B

118.

C

120.

119. A
121.
123.
125.

C

129.

122. A

B
C

127.


D

D

124.

B

126.

B

128.

B

130. A

C

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×