TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 6, 12, 24.
B. 2, 4, 8.
C. 8, 16, 32.
D. 2 3, 4 3, 38.
Câu 2. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc của
0
A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và BC
a 3
. Khi đó thể tích khối lăng trụ là
là
4 √
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
36
6
12
Câu 3. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m ≥ .
C. m > .
D. m < .
4
4
4
4
Câu 4. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
23
1079
1637
.
B.
.
C.
.
D.
.
A.
4913
4913
68
4913
Câu 5. Thể tích của khối lăng trụ
√ tam giác đều có cạnh bằng
√ 1 là:
3
3
3
A. .
B.
.
C.
.
4
4
2
√
3
D.
.
12
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử của
Câu 6. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
S bằng
A. 3.
B. 2.
C. 5.
D. 4.
Câu 7. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 6.
C. 8.
D. 5.
Câu 8. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
.
B.
.
C.
.
D. a 6.
A.
2
3
6
Câu 9.
Z [1233d-2] Mệnh đề nào sau đây sai?
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
A.
Câu 10. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
C. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
D. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
Trang 1/10 Mã đề 1
√
Câu 11. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vơ số.
C. 63.
D. 62.
Câu 12. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 13. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.
C. 12.
D. 20.
Câu 14. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Khơng có.
D. Có vơ số.
Câu 15.
! định nào sau đây là sai?
Z Các khẳng
0
A.
Z
C.
Z
f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.
B.
Z
D.
f (x)dx = F(x) + C ⇒
Z
f (t)dt = F(t) + C.
f (x)dx = F(x) +C ⇒
Z
f (u)dx = F(u) +C.
Câu 16. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 1.
B. f 0 (0) = 10.
C. f 0 (0) =
1
.
ln 10
D. f 0 (0) = ln 10.
Câu 17. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
1
Câu 18. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
Câu 19. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. 5.
C. −6.
2
D. −5.
Câu 20. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 3.
B. m = ±3.
C. m = ± 2.
D. m = ±1.
√
√
Câu 21. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6 −√x
√
A. 3.
B. 3 2.
C. 2 + 3.
D. 2 3.
Câu 22. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.
C. 24.
D. 144.
Câu 23. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Nhị thập diện đều. C. Tứ diện đều.
D. Bát diện đều.
Câu 24. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 4.
D. 10.
C. 6.
Câu 25. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. 1.
B. 2.
C. .
2
2
Câu 26. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3)2 − 7
A. −7.
B. −5.
C. Không tồn tại.
D.
ln 2
.
2
D. −3.
Trang 2/10 Mã đề 1
Câu 27. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 160 cm2 .
2n2 − 1
Câu 28. Tính lim 6
3n + n4
2
A. 1.
B. .
C. 2.
D. 0.
3
√
Câu 29. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. Vô số.
D. 63.
Câu 30. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Khơng có.
D. Có một.
Câu 31. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 24 m.
C. 16 m.
D. 8 m.
Câu 32. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a
= .
C. lim [ f (x) − g(x)] = a − b.
D. lim
x→+∞
x→+∞ g(x)
b
Câu 33. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
√
3
3
10a
.
A. 20a3 .
B. 10a3 .
C. 40a3 .
D.
3
Câu 34. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B. 12.
C. 27.
D.
.
2
Câu 35. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 3, 55.
C. 15, 36.
D. 20.
q
Câu 36. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Câu 37. Phát biểu nào sau đây là sai?
1
= 0 với k > 1.
nk
D. lim un = c (Với un = c là hằng số).
A. lim qn = 1 với |q| > 1.
1
C. lim √ = 0.
n
B. lim
Câu 38. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y = x + .
B. y =
.
C. y = x4 − 2x + 1.
D. y = x3 − 3x.
x
2x + 1
Câu 39.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx
g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx −
g(x)dx.
Trang 3/10 Mã đề 1
Z
C.
( f (x) + g(x))dx =
Z
f (x)dx +
Z
Z
g(x)dx.
D.
k f (x)dx = f
Z
f (x)dx, k ∈ R, k , 0.
Câu 40. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Hai cạnh.
Câu 41. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.
B. 4.
D. Năm cạnh.
1
3|x−1|
C. 3.
Câu 42. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 0.
C. m > 1.
√
x2 + 3x + 5
Câu 43. Tính giới hạn lim
x→−∞
4x − 1
1
A. 1.
B. 0.
C. − .
4
Câu 44. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
= 3m − 2 có nghiệm duy
D. 1.
D. m > −1.
D.
1
.
4
D. Khối tứ diện đều.
[ = 60◦ , S O
Câu 45. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng
√
a 57
2a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
log2 240 log2 15
Câu 46. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. 1.
C. −8.
D. 3.
Câu 47. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. 2.
D. Vơ nghiệm.
√
Câu 48. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng
√
√
3a 58
3a 38
3a
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 49. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−1; 3].
C. [−3; 1].
D. [1; +∞).
Câu 50. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 51. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (3; 4; −4).
C. ~u = (2; 2; −1).
D. ~u = (2; 1; 6).
!
1
1
1
Câu 52. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. 2.
B. .
C. .
D. +∞.
2
2
Trang 4/10 Mã đề 1
Câu 53. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
B. .
C. 9.
D. 6.
A. .
2
2
Câu 54. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 55. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(4; 8).
C. A(−4; −8)(.
D. A(−4; 8).
Câu 56. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 12.
C. 20.
D. 8.
Câu 57. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (I) đúng.
C. Chỉ có (II) đúng.
D. Cả hai câu trên sai.
x2
Câu 58. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 1.
C. M = e, m = 0.
D. M = , m = 0.
A. M = e, m = .
e
e
9x
Câu 59. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. 2.
C. −1.
D. 1.
2
Câu 60. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 4.
C. 6.
D. 8.
Câu 61. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −2.
D. m = −1.
[ = 60◦ , S A ⊥ (ABCD).
Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
√
a3 2
a3 2
a3 3
A.
.
B.
.
C.
.
D. a3 3.
4
12
6
Câu 63. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 18 lần.
Câu 64. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {3}.
C. {5; 2}.
D. {2}.
Câu 65. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 3.
C. 1.
D. 2.
!
5 − 12x
Câu 66. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.
Trang 5/10 Mã đề 1
Câu 67. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. Vơ nghiệm.
C. 3 nghiệm.
D. 1 nghiệm.
π π
Câu 68. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 7.
C. −1.
D. 1.
Câu 69. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 10.
C. 3.
D. 12.
Câu 70. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 6 mặt.
D. 4 mặt.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 71. Tìm m để hàm số y =
x+m
A. 67.
B. 45.
C. 34.
D. 26.
!2x−1
!2−x
3
3
Câu 72. Tập các số x thỏa mãn
≤
là
5
5
A. (+∞; −∞).
B. [3; +∞).
C. (−∞; 1].
D. [1; +∞).
Câu 73. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 8.
C. 12.
D. 20.
Câu 74. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là −4.
√
Câu 75. √
Thể tích của khối lập phương có cạnh bằng a 2
√
√
2a3 2
A.
.
B. 2a3 2.
C. V = a3 2.
D. V = 2a3 .
3
Câu 76. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 4.
C. −4.
D. 2.
Câu 77. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 6.
C. V = 5.
D. V = 4.
Câu 78. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
9
6
15
Câu 79. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. [6, 5; +∞).
D. (4; 6, 5].
x+1
Câu 80. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
3
6
2
2
Câu 81. Giá trị giới hạn lim (x − x + 7) bằng?
x→−1
A. 9.
B. 7.
C. 0.
D. 5.
Câu 82. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = S h.
C. V = 3S h.
2
Câu 83. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
1
D. V = S h.
3
(I) lim nk = +∞ với k nguyên dương.
Trang 6/10 Mã đề 1
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 3.
C. 0.
D. 1.
Câu 84. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. 2020.
D. log2 2020.
Câu 85. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt
√
2
2
2
a 2
11a
a2 7
a 5
.
B.
.
C.
.
D.
.
A.
16
4
32
8
Câu 86. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Câu 87. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.
B. f (x) có giá trị lớn nhất trên K.
D. f (x) liên tục trên K.
Câu 88. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
8a
5a
a
A.
.
B.
.
C.
.
D. .
9
9
9
9
!
1
1
1
+
+ ··· +
Câu 89. Tính lim
1.2 2.3
n(n + 1)
3
A. .
B. 2.
C. 0.
D. 1.
2
1 − 2n
Câu 90. [1] Tính lim
bằng?
3n + 1
1
2
2
B. − .
C. 1.
D. .
A. .
3
3
3
[ = 60◦ , S O
Câu 91. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ O đến (S
√ BC) bằng
√ với mặt đáy và S O = a.
√
2a 57
a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
19
17
19
Câu 92. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. −6.
C. 0.
D. 3.
Câu 93. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 94. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−1; 1).
C. (−∞; −1).
D. (1; +∞).
Trang 7/10 Mã đề 1
x−1 y z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 95. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Câu 96. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.
Câu 97. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 + 1; m = 1.
2
−2
C. M = e − 2; m = e + 2.
D. M = e−2 − 2; m = 1.
Câu 98. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 1.
C. 3.
D. 2.
√
Câu 99. Xác định phần ảo của số phức z = ( 2 + 3i)2
√
√
A. 7.
B. −7.
C. −6 2.
D. 6 2.
Câu 100. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều.
D. Khối tứ diện đều.
Câu 101. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ là
√
√ Thể tích khối chóp S 3.ABC
3
a 3
a3 2
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
12
4
12
6
x=t
Câu 102. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
D. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
C. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
log7 16
Câu 103. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. 2.
B. −2.
C. −4.
D. 4.
1
Câu 104. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 3.
C. 4.
D. 2.
Câu 105. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. −2 + 2 ln 2.
C. 1.
D. e.
Câu 106. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. +∞.
C. 0.
D. 2.
Câu 107. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B. 7.
C.
.
D. 5.
2
2
Trang 8/10 Mã đề 1
Câu 108. Tính lim
x→1
A. 0.
x3 − 1
x−1
B. 3.
C. −∞.
D. +∞.
Câu 109. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
4
8
2
Câu 110. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|
√
√
√
12 17
A.
.
B. 34.
C. 5.
D. 68.
17
Câu 111. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 12 cạnh.
C. 11 cạnh.
D. 9 cạnh.
Câu 112. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√
√ S .ABCD là
3
3
3
√
a 3
a 3
a 2
.
B. a3 3.
C.
.
D.
.
A.
2
4
2
2
Câu 113. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
A. √ .
B.
.
C. 3 .
3
2e
e
2 e
D.
1
.
e2
Câu 114. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Giảm đi n lần.
B. Tăng lên (n − 1) lần. C. Tăng lên n lần.
D. Không thay đổi.
Câu 115. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
4
12
4
8
cos n + sin n
Câu 116. Tính lim
n2 + 1
A. 1.
B. +∞.
C. −∞.
D. 0.
6
Câu 117. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x
+
1
Z 1
f (x)dx.
0
A. 4.
B. −1.
C. 6.
D. 2.
d = 300 .
Câu 118. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V √của khối lăng trụ đã cho.
√
√
3a3 3
a3 3
3
3
.
C. V = 3a 3.
D. V =
.
A. V = 6a .
B. V =
2
2
Câu 119. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.
C. 12.
D. 6.
x+2
Câu 120. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 2.
C. 1.
D. 3.
Câu 121. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 3.
C. 0, 2.
D. 0, 5.
Trang 9/10 Mã đề 1
Câu 122. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 40 .(3)10
C 10 .(3)40
C 20 .(3)20
C 20 .(3)30
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
!x
1
Câu 123. [2] Tổng các nghiệm của phương trình 31−x = 2 +
là
9
A. − log3 2.
B. log2 3.
C. 1 − log2 3.
D. − log2 3.
Câu 124.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
xα+1
A.
xα dx =
+ C, C là hằng số.
B.
0dx = C, C là hằng số.
α+1
Z
Z
1
C.
dx = x + C, C là hằng số.
D.
dx = ln |x| + C, C là hằng số.
x
d = 30◦ , biết S BC là tam giác đều
Câu 125. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
16
9
26
Câu 126. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. R.
C. (−∞; 1).
D. (2; +∞).
tan x + m
Câu 127. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
2
Câu 128. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 3 − log2 3.
C. 1 − log2 3.
D. 1 − log3 2.
Câu 129. Cho hàm số y = −x + 3x − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
3
2
Câu 130. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là
√
a3
a3 3
a3 3
3
A.
.
B.
.
C. a .
D.
.
3
3
9
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
3. A
4. A
5.
B
6.
7.
B
8.
9.
B
10.
11.
D
13.
D
D
C
B
12. A
14.
C
B
15.
D
16.
D
17.
D
18.
D
19.
D
20.
21.
C
22.
B
23. A
D
24. A
25.
B
26.
27.
B
28.
29. A
30.
D
B
D
32.
C
31.
C
33. A
34. A
C
35.
C
36.
37. A
38.
B
39. A
40.
B
41.
43.
45.
42.
D
C
B
47. A
44.
C
46.
C
48.
49.
B
D
50.
C
51. A
52. A
53.
B
54. A
55.
B
56.
57. A
B
58.
59.
D
61.
63.
D
C
60. A
62. A
C
B
64. A
65. A
66.
67. A
68.
1
B
D
69.
C
70. A
71.
C
72.
D
73.
75.
74.
B
79.
D
C
82.
83. A
84. A
C
85.
D
87.
D
D
88.
B
89.
90.
B
91.
92. A
94.
D
81. A
D
86.
B
76. A
77.
80.
D
93.
C
B
95. A
B
96.
D
97.
D
98.
D
99.
D
100.
B
101. A
102. A
103.
104. A
105.
C
106.
108.
B
109.
B
111. A
112.
D
114. A
113.
D
115.
D
116.
D
117. A
118.
D
119.
122.
D
107. A
110. A
120.
C
B
121.
D
D
B
123.
D
124. A
125. A
126. A
127.
B
128. A
129.
B
130. A
2