Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (695)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.73 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

d = 300 .
Câu 1. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho.



a3 3
3a3 3
3
3
A. V =
.
B. V = 3a 3.
C. V = 6a .
D. V =
.
2
2
2
Câu 2. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2


1
1
1
C. 3 .
D. 3 .
B. 2 .
A. √ .
e
e
2e
2 e
Câu 3. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
3
3
a 3
a 3
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.

48
24
48
16
Câu 4. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 1.
C. 3.
D. 2.
log2 240 log2 15

+ log2 1 bằng
Câu 5. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 4.
C. 3.
D. 1.
Câu 6. Trong các khẳng định sau, khẳng định nào sai? √
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Cả ba đáp án trên.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
x2
Câu 7. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 0.
C. M = , m = 0.

D. M = e, m = 1.
A. M = e, m = .
e
e
2
Câu 8. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 2 − log2 3.
D. 3 − log2 3.
Câu 9. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

2
2
2
a 2
11a
a2 5
a 7
.
B.
.
C.
.
D.

.
A.
8
4
32
16
Câu 10. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; −8).
C. A(4; 8).
D. A(−4; 8).



x = 1 + 3t




Câu 11. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương

 trình là











x = 1 + 7t
x = −1 + 2t
x = 1 + 3t
x = −1 + 2t

















D. 
A. 
.
B. 
y = 1 + 4t .
y = −10 + 11t .
y=1+t
y = −10 + 11t . C. 
















z = −6 − 5t
z = 1 + 5t
z = 6 − 5t
z = 1 − 5t
Trang 1/11 Mã đề 1



Câu 12. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.
C. 9 năm.
D. 10 năm.


Câu 13. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

A. Phần thực là √2, phần ảo là 1 − √
3.
B. Phần thực là 2 −√1, phần ảo là √
3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.

Câu 14. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vô số.
Câu 15. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
B. 2.
C. 1.

A. .
2

D.

ln 2
.
2

Câu 16. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±3.
B. m = ±1.
C. m = ± 3.
D. m = ± 2.
Câu 17. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
.
B. 2a 2.
C.
.
D. a 2.
A.
2

4
Câu 18. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 19. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối tứ diện.
D. Khối lập phương.
Câu 20. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. .
B. 25.
C. 5.
D. 5.
5
1 − xy
Câu 21. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
2 11 − 3
9 11 + 19
18 11 − 29
A. Pmin =
. B. Pmin =

.
C. Pmin =
. D. Pmin =
.
9
3
9
21


Câu 22. [2] Cho chóp đều S .ABCD có đáy là hình vuông tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng



a 6
.
B. 2a 6.
C. a 6.
D. a 3.
A.
2
Câu 23. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 144.

C. 2.

D. 4.


Câu 24. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 84cm3 .
D. 48cm3 .
n−1
Câu 25. Tính lim 2
n +2
A. 3.
B. 2.
C. 0.
D. 1.
Trang 2/11 Mã đề 1


Câu 26. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 12.
C. 4.
D. 11.
Câu 27.√Thể tích của tứ diện đều √
cạnh bằng a

3
3
a 2
a 2

a3 2
A.
.
B.
.
C.
.
12
4
2
Câu 28. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 6 mặt.
C. 8 mặt.

D. 4 mặt.

Câu 29. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (2; +∞).
C. (−∞; 1).

D. R.

Câu 30. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.
2
2n − 1
Câu 31. Tính lim 6

3n + n4
A. 0.
B. 2.

C. 4.


a3 2
D.
.
6

D. 3.

2
.
3
Câu 32. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
C. 1.

D.

Câu 33. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 2; m = 1.
C. M = e−2 + 1; m = 1.

D. M = e−2 − 2; m = 1.

Câu 34. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 36.
C. 108.
D. 6.
3
2
Câu 35. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. −3 + 4 2.
B. −3 − 4 2.
C. 3 − 4 2.


D. 3 + 4 2.

Câu 36. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là

3
3
a
2a 3
a3
4a3 3
A.

.
B.
.
C.
.
D.
.
3
3
6
3
Câu 37. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim f (x) = f (a).
x→a

x→a

C. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a

D. f (x) có giới hạn hữu hạn khi x → a.

Câu 38. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27

A. 12.
B. 27.
C.
.
D. 18.
2
Câu 39. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



14 3
20 3
A.
.
B. 8 3.
C. 6 3.
D.
.
3
3
Câu 40. Phát biểu nào sau đây là sai?
1
A. lim = 0.
B. lim un = c (un = c là hằng số).
n
1
C. lim qn = 0 (|q| > 1).

D. lim k = 0.
n
Trang 3/11 Mã đề 1


Câu 41. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 42. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 1587 m.
C. 27 m.
D. 25 m.
x
9
Câu 43. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 1.
B. −1.
C. 2.
D. .
2

Câu 44. Giá trị của lim (3x2 − 2x + 1)
A. +∞.

x→1

B. 3.

Câu 45. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.

C. 2.

D. 1.

C. 4.

D. 8.

Câu 46. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −3.

D. m = −1.

Câu 47. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 8 m.

C. 24 m.
D. 12 m.
!
!
!
x
1
2
2016
4
. Tính tổng T = f
+f
+ ··· + f
Câu 48. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 1008.
C. T =
.
D. T = 2016.
2017
Câu 49. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 3 lần.

D. Tăng gấp 18 lần.
Câu 50. Biểu thức nào sau đây √
khơng có nghĩa
−3
−1
−1.
A. 0 .
B.


C. (− 2)0 .

D. (−1)−1 .

Câu 51. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 4).
C. (2; 4; 3).
D. (1; 3; 2).
Câu 52. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + sin x cos x.

D. 1 + 2 sin 2x.

Câu 53. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 2.

C. 1.

D. −1.

Câu 54. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị lớn nhất trên K.
Câu 55. Tính lim
A. 1.

5
n+3

B. 0.

B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) liên tục trên K.

C. 2.

D. 3.
Trang 4/11 Mã đề 1


Câu 56. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.

C. 102.423.000.
D. 102.016.000.
Câu 57. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.

C. 8.

D. 12.

Câu 58. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m , 0.
0

0

0

0

D. m < 0.

0

Câu 59. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.

D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 60. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 61. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.

C. {3; 4}.

D. {4; 3}.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.

Câu 62. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.

Câu 63. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)

8a
5a
a
2a
.
B.
.
C.
.
D. .
A.
9
9
9
9
2
Câu 64. Vận tốc chuyển động của máy bay là v(t) = 6t + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 2400 m.
D. 6510 m.
Câu 65. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a

C. lim [ f (x)g(x)] = ab.
D. lim
= .
x→+∞
x→+∞ g(x)
b
Câu 66. Hàm số y =
A. x = 2.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 1.

C. x = 0.

D. x = 3.

Câu 67. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 68. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. Vô số.
C. 3.
D. 2.
Trang 5/11 Mã đề 1



x+2
Câu 69. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. Vô số.
C. 1.
D. 2.
Câu 70. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 20 triệu đồng.
Câu 71. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 23.
C. 21.
D. 22.
Câu 72. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng


cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
.
B. 1.
C. 3.
A.
D. 2.
3
Câu 73. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. m > − .
C. − < m < 0.
D. m ≥ 0.
4
4
Câu 74. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.

D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 75. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
.
B.
.
A.
n
n

1
C. √ .
n

D.

1
.
n




x=t




Câu 76. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 

y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
x−1
Câu 77. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2

tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng

√ đều ABI có hai đỉnh A, √
B. 2 3.
C. 2.
D. 2 2.
A. 6.
log 2x
Câu 78. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 ln 2x
1
1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
x ln 10
2x ln 10
x3
Trang 6/11 Mã đề 1



Câu 79. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 3.
2n + 1
Câu 80. Tính giới hạn lim
3n + 2
3
1
A. .
B. .
2
2

C. 0.

D. 1.

D.

2
.
3

Câu 81. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).

D. d ⊥ P.
Câu 82.

[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].

C. m ∈ [0; 2].

q
x+ log23 x + 1+4m−1 =

D. m ∈ [0; 4].

Câu 83. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1637
1728
1079
.
B.
.
C.
.

D.
.
A.
4913
68
4913
4913
x+3
Câu 84. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 1.
C. 2.
D. 3.
!4x
!2−x
2
3
Câu 85. Tập các số x thỏa mãn


3 # 2
#
"
!
"
!
2

2
2
2
A. −∞; .
; +∞ .
B. −∞; .
C.
D. − ; +∞ .
5
3
5
3
Câu 86. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y−2 z−3
x−2 y+2 z−3
A.

=
=
.
B.
=
=
.
2
3
4
2
2
2
x y z−1
x y−2 z−3
C. = =
.
D. =
=
.
1 1
1
2
3
−1
!
1
1
1
Câu 87. [3-1131d] Tính lim +

+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
B. .
C. +∞.
D. 2.
A. .
2
2
!x
1
1−x
Câu 88. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log3 2.
B. 1 − log2 3.
C. − log2 3.
D. log2 3.

Câu 89. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


3
πa 3

πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
6
3
2
Câu 90. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 91. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 2).

C. (−∞; 0) và (2; +∞). D. (0; +∞).
Trang 7/11 Mã đề 1


Câu 92. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Không có câu nào C. Câu (III) sai.
D. Câu (I) sai.
sai.
Câu 93. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 5.
C. 4.
D. 6.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 94. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 2.
B. 5.
C. 3.
D. 4.
Câu 95. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Năm cạnh.
C. Bốn cạnh.

D. Ba cạnh.


Câu 96. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. β = a β .
B. aα+β = aα .aβ .
C. aα bα = (ab)α .
D. aαβ = (aα )β .
a
Câu 97. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng



2a 3
a 3
a 3
A.
.
B.
.
C. a 3.
.
D.
2
2
3
Câu 98. Giá trị giới hạn lim (x2 − x + 7) bằng?

x→−1
A. 5.
B. 9.
C. 0.
D. 7.
Câu 99. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 6.

C. 12.

D. 10.

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0.

Câu 100. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.

B. m < 0 ∨ m = 4.

Câu 101. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là

A. (II) và (III).

B. (I) và (II).

Câu 102. Dãy số nào có giới hạn bằng 0?
!n
−2
n3 − 3n
.
B. un =
.
A. un =
n+1
3

C. (I) và (III).

D. Cả ba mệnh đề.

C. un = n − 4n.

!n
6
D. un =
.
5

2

Câu 103. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng

A. f 0 (0) = 1.

B. f 0 (0) = 10.

C. f 0 (0) = ln 10.

D. f 0 (0) =

1
.
ln 10

Trang 8/11 Mã đề 1


Câu 104. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m > 3.
D. m < 3.
Câu 105. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 3.

C. 2e + 1.

B. 2e.

D.


2
.
e

Câu 106. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 107. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. 6.
C. −6.
D. −5.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 108. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m > 4.
2

Câu 109. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 0.

B. +∞.


Câu 110. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 6.

C. 2.

D. 1.

C. 10.

D. 8.

Câu 111. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. 2n3 lần.
D. n3 lần.
Câu 112. [12215d] Tìm m để phương trình 4 x+
3
A. m ≥ 0.
B. 0 < m ≤ .
4


1−x2




− 3m + 4 = 0 có nghiệm
3
9
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4

− 4.2 x+

1−x2

Câu 113. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B.
.
C. −7.
D. −2.
27
d = 120◦ .
Câu 114. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 3a.
A. 4a.
B. 2a.
C.
2

Câu 115. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 3.
C. 4.
D. 2.
Câu 116. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 6.
C. V = 5.
D. V = 4.
Câu 117. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 135.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e

C. S = 24.

D. S = 32.

Câu 118. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).

D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Trang 9/11 Mã đề 1


Câu 119. Tính lim
x→5

x2 − 12x + 35
25 − 5x
B. −∞.

2
2
.
D. − .
5
5
Câu 120. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 8, 16, 32.
B. 2 3, 4 3, 38.
C. 2, 4, 8.
D. 6, 12, 24.
tan x + m
nghịch biến trên khoảng
Câu 121. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .

4
A. (−∞; −1) ∪ (1; +∞). B. [0; +∞).
C. (1; +∞).
D. (−∞; 0] ∪ (1; +∞).
!
1
1
1
+
+ ··· +
Câu 122. Tính lim
1.2 2.3
n(n + 1)
3
A. 1.
B. 0.
C. 2.
D. .
2
Câu 123. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 22016 .
C. e2016 .
D. 1.
A. +∞.

C.

Câu 124. Khối đa diện đều loại {5; 3} có số mặt

A. 8.
B. 12.

C. 20.

D. 30.

Câu 125. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là
8
5
7
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
A.
3
3
3
Câu 126. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 12 cạnh.

C. 11 cạnh.

D. 9 cạnh.


Câu 127. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 128. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 5}.

D. {3; 4}.

0

Câu 129. Cho hai đường thẳng d và d cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Khơng có.
D. Có vơ số.

Câu 130. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A.
;3 .
B. 2; .
C. (1; 2).
D. [3; 4).
2

2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.

2.

3. A

4. A

5. A

6. A

7.

B

9. A
11.


B

13.
15.

C

B

8.

C

10.

C

12.

C

14.

C
D

16.

B


17. A

C

18.

19.

20.

C

21.

B

22.

23.

B

24. A

B
C

26.

B


27. A

28.

B

29. A

30.

C

31. A

32.

C

25.

C

33.

D

34. A

35. A

37.

B

39.

C

36.

D

38.

D

40.

C

41. A

42.

C

43. A

44.


C

45.

D

46. A

47. A

48.

49. A

50. A

51. A

52. A

53. A

54.

55.

B

56.


57.

B

58.

59.
63.

B
C
D

62.

C

C

64.

B

65.
67.

D

60.


D

61.

B

D

66.
68.

C
1

D
B
D


69.

D

70.

71.

D

72.


B
D

73.

B

74.

B

75.

B

76.

B

77.

B

78.

B

79.
81.


80.

D

82. A

B

83.

D

84.

C

D

85.

D

86.

C

87.

D


88.

C

89.

C

90.

B

91.

C

92.

B

93.

D

94.

95.

D


96. A

97.

D

98.

B

100.

B

102.

B

104.

B

99. A
101.

B

103.


C

D

106.

105. A
107.

D

108. A

109. A
111.

D

110.
B

113.

D
C

115.
117.

D


112.

C

114.

C

116.

D

118.

D
D

119.

C

120.

121.

C

122. A


123. A

124.

125.

B

126. A

127.

B

128.

129.

B

130. A

2

B

B
C




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×