TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 9 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.424.000.
D. 102.016.000.
Câu 2. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (I) đúng.
C. Chỉ có (II) đúng.
D. Cả hai đều sai.
!
!
!
1
2
2016
4
. Tính tổng T = f
+f
+ ··· + f
Câu 3. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T =
.
C. T = 2016.
D. T = 2017.
2017
Câu 4. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+3
c+1
c+2
c+2
x2 − 12x + 35
Câu 5. Tính lim
x→5
25 − 5x
2
2
A. − .
B. .
C. +∞.
D. −∞.
5
5
Câu 6. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≥ 3.
C. m ≤ 3.
D. −3 ≤ m ≤ 3.
!4x
!2−x
3
2
≤
là
Câu 7. Tập các số x thỏa mãn
3
2
"
!
"
!
#
#
2
2
2
2
A. − ; +∞ .
B. −∞; .
C. −∞; .
D.
; +∞ .
3
3
5
5
x
Câu 8. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
4
6
1
Câu 9. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 2.
C. 4.
D. 1.
Câu 10. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = (0; +∞).
C. D = R.
D. D = R \ {1}.
Câu 11. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−1; 3].
C. [−3; 1].
D. [1; +∞).
Trang 1/9 Mã đề 1
2−n
Câu 12. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 0.
C. −1.
D. 1.
Câu 13. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 14. [1] Tính lim
x→3
A. 0.
x−3
bằng?
x+3
B. −∞.
C. 1.
D. +∞.
Câu 15. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
3
A. a .
B.
.
C.
.
D.
.
6
12
24
log(mx)
Câu 16. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m > 4.
Câu 17. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (III) sai.
sai.
C. Câu (II) sai.
D. Câu (I) sai.
x
Câu 18. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
3
1
A. .
B. 1.
C.
.
D. .
2
2
2
Câu 19. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Thập nhị diện đều. C. Tứ diện đều.
D. Bát diện đều.
Câu 20. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 3.
D. T = 4 + .
A. T = e + 1.
B. T = e + .
e
e
Câu 21. Phát biểu nào sau đây là sai?
1
A. lim = 0.
B. lim un = c (un = c là hằng số).
n
1
C. lim qn = 0 (|q| > 1).
D. lim k = 0.
n
Câu 22. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối lập phương.
Câu 23. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = 1.
C. f 0 (0) = ln 10.
ln 10
D. f 0 (0) = 10.
Trang 2/9 Mã đề 1
Câu 24. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 9 mặt.
D. 4 mặt.
Câu 25. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
A. a 2.
.
D.
.
B. a 3.
C.
2
3
Câu 26. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√
√ của hàm số. Khi đó tổng
√M + m
A. 7 3.
B. 8 3.
C. 16.
D. 8 2.
Câu 27. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 20.
C. 12.
Câu 28. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 3.
C. 1.
D. 30.
D. 2.
Câu 29. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
2
1
9
.
B.
.
C. .
D. .
A.
10
10
5
5
Câu 30. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. 1.
C. +∞.
D. 3.
Câu 31. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 11.
C. 4.
D. 12.
Câu 32. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 24 m.
D. 8 m.
Câu 33. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) trên khoảng (a; b).
Câu 34. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 27 m.
D. 1587 m.
Câu 35. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng 2n+1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 36. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 4.
C. 0, 5.
D. 0, 3.
Trang 3/9 Mã đề 1
Câu 37. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. [6, 5; +∞).
D. (4; 6, 5].
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 38. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 2.
B. 4.
C. 7.
D. 1.
Câu 39. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a 6
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
24
48
8
24
!
1
1
1
+
+ ··· +
Câu 40. Tính lim
1.2 2.3
n(n + 1)
3
A. 0.
B. 2.
C. .
D. 1.
2
Câu 41. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4 − 2e
4e + 2
4 − 2e
Câu 42. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √
√
2 3
C.
.
D. 1.
A. 2.
B. 3.
3
Câu 43.! Dãy số nào sau đây có giới
!n hạn là 0?
!n
!n
n
4
1
5
5
A.
.
B.
.
C.
.
D. − .
e
3
3
3
Câu 44. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 18 lần.
Câu 45. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
4
8
2
1 3
Câu 46. [2D1-3] Cho hàm số y = − x + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
x−2
Câu 47. Tính lim
x→+∞ x + 3
2
A. − .
B. 1.
C. −3.
D. 2.
3
Câu 48. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 49. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.
C. 20.
D. 12.
x = 1 + 3t
Câu 50. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương trình là
Trang 4/9 Mã đề 1
x = 1 + 7t
A.
y=1+t
z = 1 + 5t
.
x = −1 + 2t
B.
y = −10 + 11t
z = 6 − 5t
.
x = −1 + 2t
C.
y = −10 + 11t
z = −6 − 5t
Câu 51. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. 5.
B. 25.
C. .
5
.
x = 1 + 3t
D.
y = 1 + 4t
z = 1 − 5t
.
√
D. 5.
! x3 −3mx2 +m
1
Câu 52. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m = 0.
C. m , 0.
D. m ∈ (0; +∞).
Câu 53. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
.
e
Câu 54. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
.
C. a 2.
.
A. 2a 2.
B.
D.
4
2
Câu 55. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 15, 36.
C. 24.
D. 20.
A. 2e + 1.
B. 2e.
C. 3.
D.
1
Câu 56. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R \ {1}.
C. D = (−∞; 1).
D. D = R.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.
D. x = 3.
Câu 57. Hàm số y =
A. x = 1.
C. x = 2.
Câu 58. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log 14 x.
B. y = log √2 x.
√
D. y = log π4 x.
C. y = loga x trong đó a = 3 − 2.
Câu 59. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 6 mặt.
D. 4 mặt.
2
Câu 60. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log3 2.
C. 3 − log2 3.
D. 1 − log2 3.
x3 − 1
Câu 61. Tính lim
x→1 x − 1
A. −∞.
B. 3.
D. 0.
C. +∞.
Câu 62. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 20.
C. 8.
D. 30.
√
Câu 63. Thể tích của khối lập phương có cạnh bằng a 2 √
√
√
2a3 2
A. V = 2a3 .
B. 2a3 2.
C.
.
D. V = a3 2.
3
3
2
Câu 64. Cho hàm số y = x − 2x + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
3
Trang 5/9 Mã đề 1
C. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 65. Tính lim
A. 0.
cos n + sin n
n2 + 1
B. +∞.
!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3
C. −∞.
D. 1.
x+2
Câu 66. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 3.
C. 1.
D. Vơ số.
Câu 67. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 4).
D. (2; 4; 6).
Câu 68. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aαβ = (aα )β .
B. aα+β = aα .aβ .
C. β = a β .
D. aα bα = (ab)α .
a
5
Câu 69. Tính lim
n+3
A. 0.
B. 3.
C. 1.
D. 2.
log 2x
Câu 70. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 ln 2x
1 − 4 ln 2x
1
1 − 2 log 2x
0
0
A. y0 = 3
.
B. y0 =
.
C.
y
=
.
D.
y
=
.
x ln 10
2x3 ln 10
2x3 ln 10
x3
Câu 71. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lăng trụ tam giác.
C. Khối bát diện đều.
D. Khối lập phương.
q
Câu 72. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
Câu 73. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 5}.
D. {4; 3}.
Câu 74. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. Không tồn tại.
C. −7.
D. −3.
Câu 75. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.
D. Khối 12 mặt đều.
C. Khối lập phương.
Câu 76. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 10.
C. 27.
D. 12.
Câu 77. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.
B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.
D. Chỉ có (II) đúng.
Trang 6/9 Mã đề 1
Câu 78. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc
√
√ với đáy và S C = a 3.3 √
a3 3
a 6
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
4
12
2
9
Câu 79. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 8.
C. 6.
D. 12.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 80. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (2; +∞).
D. (−∞; 2).
Câu 81. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. −5.
C. 6.
2
D. 5.
Câu 82. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
D. .
A. 7.
B. 5.
C.
2
2
Câu 83. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 22.
C. 24.
D. 21.
Câu 84. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
√
√
4n2 + 1 − n + 2
Câu 85. Tính lim
bằng
2n − 3
3
A. 1.
B. 2.
C. .
D. +∞.
2
π
Câu 86. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
A. T = 2.
B. T = 2 3.
C. T = 3 3 + 1.
D. T = 4.
√
√
Câu 87. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l
√
A. Phần thực là √2 − 1, phần ảo là √
3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 88. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
13
9
23
A. − .
B.
.
C.
.
D. −
.
16
100
25
100
1
Câu 89. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. .
C. 3.
D. −3.
3
3
Câu 90. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Bốn cạnh.
C. Hai cạnh.
D. Năm cạnh.
Trang 7/9 Mã đề 1
Câu 91. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S 3.ABCD là
a3 3
a 3
a
A.
.
B.
.
C.
.
D. a3 .
9
3
3
x+1
bằng
Câu 92. Tính lim
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
6
2
3
Câu 93. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
f (x) a
C. lim
= .
D. lim [ f (x) + g(x)] = a + b.
x→+∞ g(x)
x→+∞
b
Câu 94. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√
√ là
3
3
3
3
8a 3
4a 3
a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
Câu 95. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
= 0.
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Câu 96. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. −2 + 2 ln 2.
C. e.
x+2
Câu 97. Tính lim
bằng?
x→2
x
A. 1.
B. 0.
C. 2.
D. 1.
D. 3.
Câu 98. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.(1, 01)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
3
(1, 01)3
120.(1, 12)3
C. m =
triệu.
D.
m
=
triệu.
(1, 01)3 − 1
(1, 12)3 − 1
Câu 99. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 8 mặt.
D. 7 mặt.
√
Câu 100. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là
√
√
√
a3
a3 3
a3 3
3
A.
.
B. a 3.
C.
.
D.
.
4
3
12
√
Câu 101. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
36
6
18
Trang 8/9 Mã đề 1
Câu 102. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 103. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
5a
8a
.
B. .
C.
.
D.
.
A.
9
9
9
9
x2 − 5x + 6
Câu 104. Tính giới hạn lim
x→2
x−2
A. 0.
B. 1.
C. −1.
D. 5.
Câu 105. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m√2 + 1)2 x trên [0; 1] bằng 8√
A. m = ±3.
B. m = ±1.
C. m = ± 3.
D. m = ± 2.
Câu 106. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
A.
.
B. .
C. a.
D. .
2
2
3
x
x
Câu 107. [1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m ≤ 3.
D. m < 3.
Câu 108. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (1; −3).
C. (−1; −7).
D. (0; −2).
Câu 109. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 − 2; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 110. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 111. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 0.
C. 2.
D. 3.
log 2x
là
Câu 112. [1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
0
A. y0 = 3
.
D.
y
=
.
B. y0 = 3
.
C. y0 =
.
2x ln 10
x ln 10
x3
2x3 ln 10
!
5 − 12x
Câu 113. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
Câu 114. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. −6.
C. 3.
D. 0.
1
Câu 115. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 116. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 6.
C. 4.
D. 8.
Trang 9/9 Mã đề 1
Câu 117. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 118. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.
B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.
Câu 119. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
6
18
9
15
Câu 120. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −12.
B. −9.
C. −15.
D. −5.
2mx + 1
1
Câu 121. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. 0.
C. −2.
D. −5.
Câu 122. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là −1, phần ảo là −4.
Câu 123. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.
D. 1 + 2 sin 2x.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 124. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 5.
B. 3.
C. 2.
D. 4.
Câu 125. [4-1245d] Trong tất cả
√ min |z − 1 − i|.
√ các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 2.
B. 10.
C. 1.
D. 2.
x2
Câu 126. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = 1.
C. M = e, m = .
D. M = e, m = 0.
e
e
Câu 127. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
ln x p 2
1
Câu 128. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
1
8
A. .
B. .
C. .
D. .
9
9
3
3
4x + 1
Câu 129. [1] Tính lim
bằng?
x→−∞ x + 1
A. −1.
B. 4.
C. 2.
D. −4.
Trang 10/9 Mã đề 1
√
Câu 130. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 58
3a
3a 38
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/9 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C
1.
3. A
5.
4.
C
D
8. A
9.
D
C
11.
B
15.
10.
C
12.
C
14. A
16. A
C
17. A
19.
C
6.
B
7. A
13.
2.
18.
20.
B
21.
C
22.
23.
C
25.
26.
C
27.
28.
D
31.
32. A
33.
C
36.
C
B
D
B
37.
C
40.
B
35. A
D
38.
C
29. A
30. A
34.
B
D
39. A
D
41. A
42. A
43.
B
44. A
45.
B
47.
B
46.
D
48. A
49.
50.
B
51.
52.
B
53.
54.
D
55.
56. A
58.
C
B
C
B
57. A
B
59. A
60. A
61.
B
62. A
63.
B
64.
B
65. A
67.
66. A
68.
69. A
C
1
D
70. A
71. A
72.
B
73.
74.
B
75.
B
77.
B
76. A
C
78.
B
79.
80.
B
81.
B
83.
B
D
82.
C
84.
85. A
86.
D
87.
88.
D
89. A
90. A
92.
B
C
91.
C
93.
C
D
95.
94. A
96.
C
97.
98.
C
99. A
100.
C
102.
D
C
101.
B
D
103. A
104.
C
105.
106.
C
107.
B
D
108.
D
109.
B
110.
D
111.
B
113.
B
112.
B
114. A
116.
115.
B
118.
121.
C
117. A
C
120. A
B
122. A
123.
C
124.
D
125.
C
126.
D
127.
B
128.
129.
B
130. A
2
B