TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
15
9
6
18
[ = 60◦ , S O
Câu 2. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng
√
√
2a 57
a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
19
19
17
Câu 3. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp đôi.
D. Tăng gấp 6 lần.
x−1
y
z+1
Câu 4. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x + y − z = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 5. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
C. log2 a =
.
D. log2 a = − loga 2.
A. log2 a = loga 2.
B. log2 a =
loga 2
log2 a
Câu 6. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
1
Câu 7. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (−∞; 1).
C. D = R \ {1}.
D. D = (1; +∞).
Câu 8. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > −1.
C. m > 0.
D. m > 1.
x+1
Câu 9. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
2
3
6
Câu 10. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 + 2 sin 2x.
D. 1 − sin 2x.
√
2
Câu 11. [4-1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. Vô số.
D. 63.
d = 300 .
Câu 12. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho.
Trang 1/10 Mã đề 1
√
3a3 3
A. V = 3a 3.
B. V =
.
2
Câu 13. Biểu thức nào sau đây √
khơng có nghĩa
−3
−1
A. (−1) .
B.
−1.
3
√
C. V = 6a .
3
√
a3 3
D. V =
.
2
√
D. (− 2)0 .
! x3 −3mx2 +m
1
Câu 14. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m , 0.
C. m ∈ R.
D. m = 0.
C. 0−1 .
Câu 15. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
2n + 1
Câu 16. Tính giới hạn lim
3n + 2
3
B. 0.
A. .
2
Câu 17. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {1}.
C.
2
.
3
C. D = R \ {0}.
D.
1
.
2
D. D = R.
Câu 18. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 19. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.1, 03
120.(1, 12)3
A. m =
triệu.
B. m =
triệu.
3
(1, 12)3 − 1
100.(1, 01)3
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Câu 20. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
C. √
.
D. √
.
A. 2
.
B. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 21. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 5
a3 15
a3 15
a3
A.
.
B.
.
C.
.
D.
.
25
5
25
3
√
Câu 22. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
3
3
3
√
a
3
a 3
a
A.
.
B. a3 3.
C.
.
D.
.
12
4
3
Câu 23. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 0.
C. 3.
D. −3.
Câu 24. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 22016 .
C. 1.
D. e2016 .
Trang 2/10 Mã đề 1
3
2
Câu 25. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
A. 3 + 4 2.
B. −3 − 4 2.
C. 3 − 4 2.
√
D. −3 + 4 2.
Câu 26. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {5}.
C. {3}.
D. {2}.
Câu 27. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. 1.
C. 3.
D. .
2
2
Câu 28. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
B.
.
C. a 2.
D.
.
A. 2a 2.
2
4
4x + 1
Câu 29. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 2.
C. 4.
D. −1.
Câu 30. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√
√ (A C D) bằng
√
√
a 3
2a 3
a 3
.
B.
.
C. a 3.
.
A.
D.
2
2
3
Câu 31. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 10 cạnh.
C. 11 cạnh.
D. 9 cạnh.
√
√
Câu 32. Tìm
√ giá trị lớn nhất của√hàm số y = x + 3 + 6√− x
A. 2 + 3.
B. 2 3.
C. 3 2.
D. 3.
Câu 33. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. −1.
C. 2.
D. 6.
Câu 34. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 10.
C. 12.
D. 3.
Câu 35. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 36. [2] Phương trình log x 4 log2
12x − 8
A. 2.
B. 1.
C. 3.
D. Vơ nghiệm.
Câu 37. Tính lim
x→1
A. 3.
x3 − 1
x−1
B. −∞.
C. +∞.
D. 0.
Câu 38. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m ≤ 0.
C. m ≥ 0.
D. m > − .
4
4
Câu 39. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .
C. 72cm3 .
D. 64cm3 .
Trang 3/10 Mã đề 1
Câu 40. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d song song với (P).
C. d nằm trên P.
D. d ⊥ P.
Câu 41. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 23.
D. 24.
Câu 42. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều.
D. Khối 20 mặt đều.
Câu 43. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.
B. 1.
C. 2.
D. 4.
Câu 44.
Z [1233d-2] Mệnh đề nào sau đây sai?
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
A.
Câu 45. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
x2 − 5x + 6
x→2
x−2
B. −1.
Câu 46. Tính giới hạn lim
A. 1.
C. 5.
Câu 47. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vô nghiệm.
C. 3 nghiệm.
D. 0.
D. 2 nghiệm.
Câu 48. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Không thay đổi.
D. Giảm đi n lần.
Câu 49.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
4
6
√
a3 2
C.
.
12
√
a3 2
D.
.
2
Trang 4/10 Mã đề 1
1 3
x − 2x2 + 3x − 1.
3
C. (−∞; 3).
D. (1; 3).
Câu 50. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (−∞; 1) và (3; +∞). B. (1; +∞).
Câu 51. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 210 triệu.
C. 216 triệu.
D. 220 triệu.
Câu 52.
! định nào sau đây là sai?
Z Các khẳng
0
f (x)dx = f (x).
A.
Z
C.
Z
B.
f (x)dx = F(x) + C ⇒
Z
f (t)dt = F(t) + C. D.
Z
k f (x)dx = k
Z
f (x)dx, k là hằng số.
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Câu 53. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−∞; 1).
C. (−1; 1).
D. (1; +∞).
1
a
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 1.
D. 7.
Câu 54. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 2.
B. 4.
Câu 55. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 3.
C. V = 6.
D. V = 4.
Câu 56. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 57. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; +∞).
C.
!4x
!2−x
2
3
Câu 58. Tập các số x thỏa mãn
≤
là
#
" 3
! 2
2
2
B. − ; +∞ .
C.
A. −∞; .
3
3
[6, 5; +∞).
D. (4; 6, 5].
"
#
2
D. −∞; .
5
!
2
; +∞ .
5
Câu 59. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
√
3
3
a
4a 3
a3
2a3 3
A.
.
B.
.
C.
.
D.
.
6
3
3
3
Câu 60. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
Câu 61. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.
C. D = [2; 1].
2
D. D = R.
Câu 62. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 4.
C. ln 14.
D. ln 10.
Câu 63. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|
√
√
√
12 17
A.
.
B. 68.
C. 5.
D. 34.
17
Trang 5/10 Mã đề 1
0 0 0 0
0
Câu 64.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 3
a 6
a 6
a 6
.
B.
.
C.
.
D.
.
A.
7
2
3
2
Câu 65. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 66. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P = 2i.
B. P =
.
C. P =
.
D. P = 2.
2
2
√
Câu 67. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
6
18
36
6
Câu 68. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
2a
a
B.
.
C.
.
D.
.
A. .
9
9
9
9
Câu 69. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục ảo.
D. Đường phân giác góc phần tư thứ nhất.
Câu 70. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) xác định trên K.
B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) có giá trị lớn nhất trên K.
q
Câu 71. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 72. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 2
a3 3
a3 3
2
A.
.
B.
.
C. 2a 2.
D.
.
24
12
24
Câu 73. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0 ∨ m = 4.
Câu 74. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.
B. m < 0.
Câu 75. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −1.
C. m = 0.
D. m = −3.
Trang 6/10 Mã đề 1
Câu 76. [2] Tổng các nghiệm của phương trình 3
A. − log2 3.
B. log2 3.
1−x
!x
1
=2+
là
9
C. 1 − log2 3.
D. − log3 2.
Câu 77. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. −7, 2.
C. 0, 8.
D. 72.
Câu 78. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
f (x)dx = f (x).
B.
f (x)dx = F(x) + C.
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 79. Tính lim
A. 2.
n−1
n2 + 2
B. 3.
C. 1.
D. 0.
Câu 80. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 1587 m.
C. 27 m.
D. 387 m.
Câu 81. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −10.
D. P = −21.
Câu 82. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
.
B.
.
A.
n
n
1
1
.
D. √ .
n
n
√
Câu 83. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vô số.
C. 62.
D. 63.
1
Câu 84. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
x
9
Câu 85. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. .
C. 2.
D. 1.
2
mx − 4
Câu 86. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 67.
C. 45.
D. 26.
C.
Câu 87. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Ba mặt.
C. Một mặt.
D. Bốn mặt.
Câu 88. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5
A. (1; 2).
B. 2; .
C. [3; 4).
D.
;3 .
2
2
Câu 89. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều.
√
ab.
D. Khối lập phương.
Trang 7/10 Mã đề 1
Câu 90. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
Câu 91. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
Câu 92. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1728
1637
23
A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
Câu 93. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
a3 3
2a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
6
3
3
Câu 94. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 2.
C. 5.
D. 3.
Câu 95. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 20.
C. 30.
Câu 96. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (2; +∞).
C. (−∞; 1).
D. 12.
D. R.
Câu 97. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 7.
C. 3.
D. 1.
Câu 98. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S .ABCD là
3
a 3
a 3
a3
A.
.
B.
.
C. a3 .
D.
.
9
3
3
Câu 99. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√
√ phẳng vng góc với 3(ABCD).
3
3
√
a 3
a 3
a 2
A.
.
B.
.
C.
.
D. a3 3.
4
2
2
2
Câu 100. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 3 − log2 3.
C. 2 − log2 3.
D. 1 − log3 2.
Câu 101. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = 6.
x2
Câu 102. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = .
C. M = , m = 0.
D. M = e, m = 0.
e
e
Câu 103. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
3
2
D. V = 3S h.
Câu 104. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
2
4
8
Trang 8/10 Mã đề 1
Câu 105. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 20.
C. 12.
D. 30.
Câu 106. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 107. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 84cm3 .
C. 64cm3 .
D. 91cm3 .
Câu 108. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Năm cạnh.
C. Bốn cạnh.
D. Hai cạnh.
ln x p 2
1
Câu 109. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
B. .
C. .
D. .
A. .
3
9
9
3
x+2
Câu 110. Tính lim
bằng?
x→2
x
A. 3.
B. 2.
C. 0.
D. 1.
Câu 111. [12215d] Tìm m để phương trình 4 x+
9
A. 0 ≤ m ≤ .
B. m ≥ 0.
4
√
1−x2
√
− 3m + 4 = 0 có nghiệm
3
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4
− 4.2 x+
1−x2
Câu 112. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 8 mặt.
D. 6 mặt.
Câu 113. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 7.
Câu 114. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 8.
C. 0.
D. 9.
C. 6.
D. 10.
[ = 60◦ , S O
Câu 115. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S√BC) bằng
√
√
a 57
a 57
2a 57
A.
.
B. a 57.
C.
.
D.
.
19
19
17
Câu 116. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 22 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 25 triệu đồng.
1
Câu 117. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
x−2
Câu 118. Tính lim
x→+∞ x + 3
2
A. − .
B. −3.
C. 1.
D. 2.
3
Câu 119. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m > 3.
D. m ≤ 3.
Trang 9/10 Mã đề 1
π π
Câu 120. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 7.
C. 1.
D. 3.
6
. Tính
Câu 121. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
3x
+
1
Z 1
f (x)dx.
0
A. 4.
B. 6.
C. 2.
D. −1.
x=t
Câu 122. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
C. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
D. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
3a
Câu 123. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
2a
a
a 2
a
A.
.
B. .
C.
.
D. .
3
4
3
3
Câu 124. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.
Câu 125. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (I) đúng.
C. Cả hai câu trên sai.
D. Chỉ có (II) đúng.
Câu 126. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√ thẳng BD bằng
√
√
√
abc b2 + c2
c a2 + b2
a b2 + c2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 127. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√
√ hình chóp S .ABCD với mặt
2
2
2
a 5
a 7
11a
a2 2
A.
.
B.
.
C.
.
D.
.
16
8
32
4
1 − 2n
Câu 128. [1] Tính lim
bằng?
3n + 1
2
1
2
A. − .
B. 1.
C. .
D. .
3
3
3
Trang 10/10 Mã đề 1
Câu 129. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 0.
C. Không tồn tại.
D. 9.
Câu 130. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 9 mặt.
D. 3 mặt.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.
C
3. A
4.
C
5.
6.
8.
D
B
10. A
12.
D
9.
D
D
C
18. A
B
D
24. A
15.
D
17.
D
19.
D
D
25.
D
B
27. A
28.
B
29.
30.
D
31.
D
B
D
35.
B
C
37. A
38.
D
39. A
40. A
41. A
42.
D
44.
46.
C
33.
C
34.
C
23.
26.
36.
C
21.
22.
32.
B
13.
B
14.
20.
7.
11.
16.
B
43. A
C
45.
B
47.
B
48.
D
D
49.
50. A
C
51. A
52.
D
53.
54.
D
55.
D
57.
D
56. A
58.
B
59.
60.
B
61.
62.
C
63. A
64.
C
65. A
66.
68.
D
B
1
C
B
D
67.
B
69.
B
70. A
71.
72. A
73.
D
74.
77.
D
C
80.
82.
D
75. A
76. A
78.
C
B
B
79.
D
81.
D
C
83.
84. A
85.
D
86. A
87.
D
89.
D
91.
D
88.
D
90. A
92.
94.
C
93.
95.
B
96. A
D
100.
99.
C
102.
103. A
B
D
108. A
105.
C
107.
C
109.
C
C
110.
B
111.
112.
B
113.
C
114.
B
101. A
D
106.
116.
D
97. A
98.
104.
B
B
115.
C
117.
C
118.
C
119. A
120.
C
121. A
122. A
D
123. A
124.
D
125. A
126.
D
127.
B
129.
B
128. A
130.
D
2