TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
!
1
1
1
+ ··· +
Câu 1. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
A. 2.
B. .
C. +∞.
2
Câu 2. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. 1.
C. −2 + 2 ln 2.
D.
5
.
2
D. e.
Câu 3. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −5.
D. −9.
log7 16
bằng
Câu 4. [1-c] Giá trị của biểu thức
log7 15 − log7 15
30
A. 2.
B. 4.
C. −2.
D. −4.
! x3 −3mx2 +m
1
Câu 5. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên khoảng
π
(−∞; +∞)
A. m = 0.
B. m ∈ (0; +∞).
C. m , 0.
D. m ∈ R.
4x + 1
Câu 6. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. −1.
C. 4.
D. 2.
Câu 7. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 8. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng
√
√
√
√
a 6
a 6
a 6
B.
.
C.
.
D.
.
A. a 6.
2
6
3
Câu 9. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 10. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 11. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −7.
C. −5.
D. Không tồn tại.
Câu 12.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
1
A.
.
B. 1.
C. .
D. .
2
2
2
x
Trang 1/10 Mã đề 1
Câu 13. Phát biểu nào sau đây là sai?
1
= 0.
n
1
D. lim k = 0.
n
A. lim un = c (un = c là hằng số).
B. lim
C. lim qn = 0 (|q| > 1).
Câu 14. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 3.
C. 5.
D. 2.
Câu 15. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 27cm3 .
C. 64cm3 .
D. 72cm3 .
√
√
4n2 + 1 − n + 2
bằng
Câu 16. Tính lim
2n − 3
3
A. 1.
B. +∞.
C. 2.
D. .
2
1 − n2
Câu 17. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. − .
C. 0.
D. .
2
2
3
2
Câu 18. Tính
√ mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i. √4
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.
D. |z| = 5.
1 − xy
Câu 19. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x +
√ y.
√
√
√
18 11 − 29
9 11 + 19
9 11 − 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
21
9
9
3
Câu 20. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = e + 3.
C. T = e + 1.
D. T = 4 + .
e
e
Câu 21. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 6.
C. −6.
2
D. 5.
x2
Câu 22. [2] Tổng các nghiệm của phương trình 3 x−1 .2 = 8.4 x−2 là
A. 2 − log2 3.
B. 3 − log2 3.
C. 1 − log3 2.
D. 1 − log2 3.
Câu 23. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
D. Khối bát diện đều.
C. Khối tứ diện đều.
Câu 24. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
Câu 25. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =
.
B. P = 2.
C. P =
.
D. P = 2i.
2
2
x2
Câu 26. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = , m = 0.
C. M = e, m = .
D. M = e, m = 1.
e
e
Câu 27. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −10.
C. P = 21.
D. P = −21.
Trang 2/10 Mã đề 1
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng
√
√ đều ABI có hai đỉnh A, √
A. 2 2.
B. 2 3.
C. 2.
D. 6.
Câu 28. [3-1214d] Cho hàm số y =
Câu 29. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (−∞; 1).
C. (2; +∞).
Câu 30. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Hai mặt.
C. Ba mặt.
x+2
bằng?
Câu 31. Tính lim
x→2
x
A. 0.
B. 1.
C. 3.
D. (0; 2).
D. Một mặt.
D. 2.
Câu 32. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.
B. 1.
C. 2.
D. 3.
Câu 33. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
B. −7.
C. −4.
D. −2.
A.
27
Câu 34. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối 12 mặt đều.
1
Câu 35. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 1.
C. 3.
D. 4.
Câu 36. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
√
3
3
10a
A. 20a3 .
B. 10a3 .
C. 40a3 .
D.
.
3
Câu 37. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 16 tháng.
C. 18 tháng.
D. 17 tháng.
Câu 38. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 25 triệu đồng.
D. 3, 03 triệu đồng.
√
x2 + 3x + 5
Câu 39. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 1.
C. .
D. 0.
4
4
Trang 3/10 Mã đề 1
2
Câu 40. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 5.
C. 3.
D. 4.
Câu 41. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√
√ C là
3
a3 3
a3
a 3
.
B.
.
C. a3 .
D.
.
A.
2
6
3
2n + 1
Câu 42. Tính giới hạn lim
3n + 2
1
2
3
C. .
D. .
A. 0.
B. .
2
2
3
0 0 0 0
Câu 43. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A B C D , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; −3; 3).
Câu 44. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ±3.
B. m = ± 3.
C. m = ±1.
D. m = ± 2.
Câu 45. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 2.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 46. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Câu 47. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 1.
C. 0.
Câu 48. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.
log2 240 log2 15
−
+ log2 1 bằng
Câu 49. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 3.
C. 4.
D. 3.
D. {4; 3}.
D. 1.
Câu 50. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
D. V = S h.
3
2
Câu 51. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
(1, 01)3 − 1
100.1, 03
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
Câu 52.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 9.
C. 27.
D. 8.
Trang 4/10 Mã đề 1
Câu 53. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
Câu 54. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 30.
C. 8.
D. 20.
2
x −9
Câu 55. Tính lim
x→3 x − 3
A. −3.
B. 6.
C. 3.
D. +∞.
1
Câu 56. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. .
C. −3.
D. 3.
3
3
Câu 57. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
−2
C. M = e + 1; m = 1.
D. M = e−2 + 2; m = 1.
Câu 58. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
.
B. √ .
A.
n
n
C.
1
.
n
D.
sin n
.
n
Câu 59. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
B. 34.
C.
.
D. 68.
A. 5.
17
Câu 60. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
9
2
1
A.
.
B.
.
C. .
D. .
10
10
5
5
Câu 61. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 10.
C. 8.
D. 12.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 62. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 63. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 20.
C. 10.
D. 30.
Câu 64. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 65.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 2.
C. 5.
D. 1.
Câu 66. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.
B. (I) và (III).
C. (II) và (III).
D. (I) và (II).
Trang 5/10 Mã đề 1
1
1
1
Câu 67. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
!
3
.
2
Câu 68. [2] Cho chóp đều S .ABCD có đáy là hình vuông tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. a 3.
B.
.
C. 2a 6.
D. a 6.
2
Câu 69. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
A. 0.
B. 2.
C. 1.
D.
Câu 70. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lăng trụ.
C. Hình tam giác.
D. Hình lập phương.
1
Câu 71. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 ≤ m ≤ −1.
C. (−∞; −2] ∪ [−1; +∞). D. −2 < m < −1.
0
Câu 72. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
√ C đến đường thẳng BB bằng 2, khoảng
0
0
cách từ A đến các đường thẳng BB và CC lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
3
2
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3
√
√
2 3
A.
.
B. 1.
C. 2.
D. 3.
3
Câu 73. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
8a 3
4a 3
8a 3
a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
3
2
Câu 74. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
√
A. 3 − 4 2.
B. −3 + 4 2.
C. −3 − 4 2.
D. 3 + 4 2.
√
Câu 75. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 38
a 38
3a
3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 76. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 77. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 21.
C. 22.
D. 23.
1
Câu 78. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R.
C. D = (−∞; 1).
D. D = R \ {1}.
Trang 6/10 Mã đề 1
Câu 79. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 20, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 70, 128 triệu đồng.
Câu 80. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 81. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng
√
a 57
a 57
B.
.
C.
.
D.
A. a 57.
19
17
π
Câu 82. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
1 π3
3 π6
2 π4
A.
e .
B. e .
C.
e .
D.
2
2
2
mx − 4
Câu 83. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 26.
C. 67.
D.
Câu 84. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 3 mặt.
[ = 60◦ , S O
a. Góc BAD
√
2a 57
.
19
1.
34.
D. 4 mặt.
Câu 85. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
Câu 86. Khối lập phương thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.
D. {5; 3}.
Câu 87. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m < .
D. m > .
4
4
4
4
!x
1
Câu 88. [2] Tổng các nghiệm của phương trình 31−x = 2 +
là
9
A. − log2 3.
B. log2 3.
C. − log3 2.
D. 1 − log2 3.
2
Câu 89. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 6.
C. 8.
D. 5.
Câu 90. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 1.
C. 22016 .
D. e2016 .
Câu 91. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
6
12
24
Câu 92. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
5
9
23
A.
.
B. − .
C.
.
D. −
.
100
16
25
100
Trang 7/10 Mã đề 1
Câu 93. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.
cos n + sin n
Câu 94. Tính lim
n2 + 1
A. −∞.
B. +∞.
2,4
Câu 95. [1-c] Giá trị của biểu thức 3 log0,1 10
A. 72.
B. 0, 8.
B. f (x) liên tục trên K.
D. f (x) có giá trị lớn nhất trên K.
C. 1.
bằng
C. 7, 2.
D. 0.
D. −7, 2.
Câu 96. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 7 mặt.
C. 9 mặt.
D. 6 mặt.
√
Câu 97. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.
D. Vô nghiệm.
log 2x
là
Câu 98. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
1
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
x ln 10
x
2x ln 10
Câu 99. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng 2n+1.
D. Số cạnh của khối chóp bằng 2n.
Câu 100. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng
√
√
√
√
a 3
2a 3
a 3
A. a 3.
B.
.
C.
.
D.
.
3
2
2
ln2 x
m
Câu 101. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e
các số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 32.
C. S = 22.
D. S = 135.
Câu 102. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√
√
√M + m
C. 8 2.
D. 8 3.
A. 16.
B. 7 3.
Câu 103. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 3.
C. 1.
D. 2.
x=t
Câu 104. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
0 0 0 0
Câu 105. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Trang 8/10 Mã đề 1
Câu 106. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt
√
2
2
2
a 2
11a
a2 5
a 7
.
B.
.
C.
.
D.
.
A.
8
4
32
16
Câu 107. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
x→a
Câu 108. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√ thẳng BD bằng
√
√
√
abc b2 + c2
a b2 + c2
c a2 + b2
b a2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
!
3n + 2
2
Câu 109. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 3.
C. 5.
D. 2.
0
0
0
0
Câu 110. [1] Đạo hàm của làm số y = log x là
1
1
1
ln 10
.
B. y0 = .
C.
.
D. y0 =
.
A. y0 =
x
x
10 ln x
x ln 10
Câu 111. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m < 3.
D. m > 3.
Câu 112. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
a3 3
a3 3
2a3 3
3
A.
.
B.
.
C. a 3.
D.
.
6
3
3
d = 120◦ .
Câu 113. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 2a.
C. 3a.
D.
.
2
√
Câu 114. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. 5.
B. 5.
D. 25.
C. .
5
Câu 115. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
B. lim un = c (Với un = c là hằng số).
n
1
C. lim qn = 1 với |q| > 1.
D. lim k = 0 với k > 1.
n
1
Câu 116. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 2.
C. 3.
D. 1.
Câu 117. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng
√
√
√
14 3
20 3
A.
.
B.
.
C. 6 3.
D. 8 3.
3
3
Trang 9/10 Mã đề 1
Câu 118. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 12.
B. 4.
C. 11.
D. 10.
Câu 119. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e4 .
C. 2e2 .
D. −e2 .
Câu 120. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng S B và√AD bằng
√
√
√
a 2
a 2
B.
.
C. a 2.
D.
.
A. a 3.
3
2
2n + 1
Câu 121. Tìm giới hạn lim
n+1
A. 1.
B. 2.
C. 3.
D. 0.
Câu 122. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (1; 2).
C. [−1; 2).
D. (−∞; +∞).
Câu 123. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.424.000.
D. 102.016.000.
Câu 124. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Đường phân giác góc phần tư thứ nhất.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục thực.
Câu 125. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a 3
a
a
B.
.
C. .
D. a.
A. .
3
2
2
√
Câu 126. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 64.
C. 63.
D. 62.
2−n
Câu 127. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 0.
C. 1.
D. 2.
x = 1 + 3t
Câu 128. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi
z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
−1
+
2t
x
=
−1
+
2t
x
=
1
+
7t
x = 1 + 3t
A.
.
D.
y = −10 + 11t . B.
y = −10 + 11t . C.
y=1+t
y = 1 + 4t .
z = 6 − 5t
z = −6 − 5t
z = 1 + 5t
z = 1 − 5t
Câu 129. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 2, 4, 8.
C. 6, 12, 24.
D. 8, 16, 32.
Trang 10/10 Mã đề 1
Câu 130. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. .
B.
.
C. 7.
D. 5.
2
2
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
D
3. A
4.
D
5. A
6.
C
8.
C
7.
B
9.
D
10.
11.
D
12.
13.
15.
B
16. A
17.
B
18.
D
20.
21. A
22. A
23. A
24.
25.
B
14. A
C
19.
D
B
C
B
C
26. A
27.
D
28.
29.
D
30. A
31.
D
32.
D
33.
D
34.
D
35.
B
36. A
37.
B
38.
B
B
39. A
40.
D
41. A
42.
D
43.
B
44.
C
45.
B
46.
C
47. A
48.
C
49. A
50.
C
51.
B
53.
55.
52. A
54.
C
B
56. A
57. A
58. A
59.
C
60.
61. A
62.
63. A
64.
65.
67.
B
B
C
1
B
D
B
66.
D
68.
D
69. A
70.
C
C
71.
B
72.
73.
B
74.
75. A
76.
77.
79.
B
C
78. A
C
B
80.
C
C
81.
D
82.
83.
D
85.
B
87.
B
86.
B
88. A
89. A
90. A
91.
B
B
92.
D
93.
94.
D
95.
96.
97. A
C
98.
B
99.
100.
B
101.
102. A
103. A
104. A
105. A
106. A
107. A
108.
B
D
B
109. A
110.
112.
D
D
111.
B
113.
B
D
114.
D
115.
C
116.
D
117.
C
119.
118. A
120.
D
121.
122.
D
123.
124.
126.
D
B
C
D
125.
C
D
127. A
128. A
129.
130. A
2
C