TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
x = 1 + 3t
Câu 1. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
−1
+
2t
x
=
1
+
7t
x
=
1
+
3t
x = −1 + 2t
A.
.
C.
D.
y = −10 + 11t . B.
y=1+t
y = 1 + 4t .
y = −10 + 11t .
z = −6 − 5t
z = 1 + 5t
z = 1 − 5t
z = 6 − 5t
Câu 2. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 12.
C. 8.
D. 10.
Câu 3. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. .
C. .
D. 4.
A. .
2
4
8
x+2
Câu 4. Tính lim
bằng?
x→2
x
A. 0.
B. 1.
C. 2.
D. 3.
Câu 5. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 24.
C. 144.
D. 2.
1
Câu 6. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 7. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 5.
C. 0, 4.
D. 0, 3.
Câu 8. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. .
C. a.
D. .
A.
2
3
2
1 + 2 + ··· + n
Câu 9. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = 1.
B. lim un = .
2
C. lim un = 0.
D. Dãy số un khơng có giới hạn khi n → +∞.
Câu 10. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
2x + 1
x→+∞ x + 1
B. −1.
Câu 11. Tính giới hạn lim
A. 1.
C. 2.
D.
1
.
2
Trang 1/11 Mã đề 1
Câu 12. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có một hoặc hai.
Câu 13. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 14. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
√
a
5
bằng
√
1
D. 5.
A. 5.
B. 25.
C. .
5
Câu 15. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 18 lần.
Câu 16.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
B. 1.
C. 2.
D. 10.
A. 2.
Câu 17. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y−2 z−3
A.
=
=
.
B. =
=
.
2
2
2
2
3
−1
x−2 y−2 z−3
x y z−1
.
D.
=
=
.
C. = =
1 1
1
2
3
4
Câu 18. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≥ 3.
C. m ≤ 3.
D. −3 ≤ m ≤ 3.
Câu 19. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2
√
A. −3 + 4 2.
B. 3 + 4 2.
C. −3 − 4 2.
√
D. 3 − 4 2.
Câu 20. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 387 m.
C. 27 m.
D. 1587 m.
Câu 21. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B. 12.
C. 27.
D.
.
2
Câu 22. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 3.
C. −3.
D. 0.
Câu 23. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 3).
D. A0 (−3; −3; 3).
Câu 24. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
a 3
2a 3
A.
C.
.
B. a 3.
.
D.
.
2
3
2
Câu 25. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục ảo.
D. Trục thực.
Trang 2/11 Mã đề 1
Câu 26. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 0.
C. 7.
D. 5.
Câu 27. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là
√
2a3 3
a3
a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
Câu 28. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 10.
2n2 − 1
Câu 29. Tính lim 6
3n + n4
2
A. .
B. 1.
3
√
√
4n2 + 1 − n + 2
Câu 30. Tính lim
bằng
2n − 3
3
A. 2.
B. .
2
C. 8.
D. 6.
C. 2.
D. 0.
C. +∞.
D. 1.
Câu 31. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
2
3
D. V = S h.
Câu 32. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(4; 8).
Câu 33. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 24.
C. 23.
D. 22.
√
Câu 34. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. Vơ số.
D. 63.
Câu 35. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
ln2 x
m
Câu 36. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 32.
C. S = 22.
D. S = 135.
Z 1
6
2
3
Câu 37. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 4.
B. 6.
C. −1.
D. 2.
Câu 38. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
Trang 3/11 Mã đề 1
Câu 39. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 12 cạnh.
C. 10 cạnh.
!2x−1
!2−x
3
3
Câu 40. Tập các số x thỏa mãn
≤
là
5
5
A. [3; +∞).
B. (−∞; 1].
C. [1; +∞).
D. 11 cạnh.
D. (+∞; −∞).
2
Câu 41. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
A. 2 .
B.
.
C. 3 .
3
e
2e
e
D.
1
√ .
2 e
Câu 42. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. Không tồn tại.
C. 0.
D. 9.
Câu 43. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
4
A. − .
B.
.
3
e
!n
5
D.
.
3
!n
1
C.
.
3
Câu 44. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 12.
C. 3.
√3
4
Câu 45. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
5
5
A. a 3 .
B. a 8 .
C. a 3 .
Câu 46. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
A.
.
B.
.
C.
.
c+1
c+2
c+3
Câu 47. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.
D. 10.
7
D. a 3 .
D.
3b + 3ac
.
c+2
D. {3; 3}.
Câu 48. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là −1, phần ảo là −4.
Câu 49. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; −1).
C. (−∞; 1).
D. (−1; 1).
Câu 50. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 1.
C. m > 0.
D. m ≥ 0.
Câu 51. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Năm mặt.
C. Ba mặt.
D. Hai mặt.
Câu 52. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
23
1079
1637
A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Câu 53. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. 2n3 lần.
D. n3 lần.
Câu 54. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
Câu 55. Hàm số y =
A. x = 2.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 1.
C. {3; 4}.
D. {5; 3}.
C. x = 3.
D. x = 0.
Trang 4/11 Mã đề 1
Câu 56. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối tứ diện.
Câu 57. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
20 3
14 3
B.
A. 8 3.
.
C.
.
D. 6 3.
3
3
1 − 2n
Câu 58. [1] Tính lim
bằng?
3n + 1
2
2
1
A. − .
B. .
C. .
D. 1.
3
3
3
√
Câu 59. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 64.
D. 62.
Câu 60. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Khơng thay đổi.
C. Giảm đi n lần.
D. Tăng lên n lần.
Câu 61. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. (1; 2).
D. [1; 2].
Câu 62. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).
C. D = R \ {1}.
D. D = R \ {0}.
1
.
2 x . ln x
D. y0 = 2 x . ln x.
Câu 63. [1] Đạo hàm của hàm số y = 2 x là
1
.
A. y0 = 2 x . ln 2.
B. y0 =
ln 2
C. y0 =
Câu 64. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. −1.
C. 1.
D. 6.
tan x + m
Câu 65. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; −1) ∪ (1; +∞).
Câu 66. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 67. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
C. lim qn = 1 với |q| > 1.
1
B. lim √ = 0.
n
1
D. lim k = 0 với k > 1.
n
Câu 68. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a = − loga 2.
D. log2 a =
.
log2 a
loga 2
Trang 5/11 Mã đề 1
Câu 69. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3
a3 3
a3 3
3
A. a .
B.
.
C.
.
D.
.
3
2
6
Câu 70. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
.
B.
.
C.
.
D.
.
A.
12
6
4
12
1
Câu 71. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (−∞; 1).
C. D = R \ {1}.
D. D = (1; +∞).
Câu 72. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m ≤ 3.
D. m < 3.
Câu 73.
Z Các khẳng định
Z nào sau đây là sai?
f (x)dx, k là hằng số.
B.
f (x)dx = F(x) + C ⇒
!0
Z
Z
Z
f (x)dx = f (x).
C.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
A.
k f (x)dx = k
Z
Câu 74. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 8.
C. 30.
Z
f (t)dt = F(t) + C.
D. 20.
Câu 75. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.
B. 1.
C. 3.
D. 4.
2
x
Câu 76. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
C. M = , m = 0.
D. M = e, m = 0.
A. M = e, m = 1.
B. M = e, m = .
e
e
Câu 77. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aαβ = (aα )β .
B. β = a β .
C. aα bα = (ab)α .
D. aα+β = aα .aβ .
a
2mx + 1
1
Câu 78. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −2.
C. −5.
D. 1.
3a
Câu 79. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
2a
a 2
a
a
A.
.
B.
.
C. .
D. .
3
3
4
3
x
Câu 80. [2] Tổng các nghiệm của phương trình log4 (3.2 − 1) = x − 1 là
A. 3.
B. 5.
C. 2.
D. 1.
Trang 6/11 Mã đề 1
Câu 81. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
x+2
đồng biến trên khoảng
Câu 82. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 3.
B. 2.
C. Vơ số.
D. 1.
Câu 83. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ là
√
√ Thể tích khối chóp S 3.ABC
3
a 3
a3 3
a3 2
a 3
.
B.
.
C.
.
D.
.
A.
6
4
12
12
Câu 84. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 7 mặt.
C. 8 mặt.
D. 9 mặt.
Câu 85. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 8.
C. 20.
D. 12.
Câu 86. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 14 năm.
C. 12 năm.
D. 10 năm.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 87. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng
√
√ đều ABI có hai đỉnh A, √
A. 2 3.
B. 2 2.
C. 2.
D. 6.
cos n + sin n
Câu 88. Tính lim
n2 + 1
A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 89. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
5a 3
2a3 3
4a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2
Câu 90. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
A. a 2.
B.
.
C. a 3.
D.
.
3
2
Câu 91. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.
C. 10 năm.
D. 9 năm.
Câu 92. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 4.
C. 3.
D. 2.
Câu 93. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
Trang 7/11 Mã đề 1
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. (II) và (III).
C. (I) và (II).
D. Cả ba mệnh đề.
Câu 94. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S .ABCD là
3
a 3
a 3
a3
A.
.
B.
.
C. a3 .
D.
.
9
3
3
Câu 95. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 96. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 12.
C. 10.
D. 8.
Câu 97. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là √
√
√
a3 3
a3 3
2a3 3
.
B.
.
C.
.
D. a3 3.
A.
3
3
6
Câu 98. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 + 2 sin 2x.
C. 1 − sin 2x.
D. −1 + 2 sin 2x.
Câu 99. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
1
1
9
.
B. .
C.
.
D. .
A.
10
5
10
5
Câu 100. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.
C. D = R.
2
D. D = [2; 1].
Câu 101. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
(1, 01)3 − 1
100.1, 03
100.(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
3
3
2
x
Câu 102. [2] Tìm m để giá trị nhỏ nhất
2
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng √
A. m = ±3.
B. m = ± 3.
C. m = ±1.
D. m = ± 2.
Câu 103. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng
√
√
√
a 6
A.
.
B. a 3.
C. a 6.
D. 2a 6.
2
9x
Câu 104. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.
B. 1.
C. −1.
D. .
2
Trang 8/11 Mã đề 1
Câu 105. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Thập nhị diện đều. B. Bát diện đều.
C. Tứ diện đều.
D. Nhị thập diện đều.
Câu 106. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
log 2x
là
Câu 107. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1
1 − 2 log 2x
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
2x ln 10
x
x ln 10
Câu 108. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (I) sai.
sai.
C. Câu (III) sai.
D. Câu (II) sai.
Câu 109. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a
√
√ thể tích của khối chóp 3S√
a 15
a3 5
a3
a3 15
.
B.
.
C.
.
D.
.
A.
5
25
25
3
Câu 110. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
Câu 111. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
nhất Pmin của P√= x + y.
√
√
√
18 11 − 29
2 11 − 3
9 11 + 19
9 11 − 19
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
21
3
9
9
Câu 112. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. 1.
C. +∞.
D. 3.
Câu 113. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 6510 m.
C. 1202 m.
D. 1134 m.
d = 300 .
Câu 114. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V √của khối lăng trụ đã cho. √
√
a3 3
3a3 3
A. V = 3a3 3.
B. V =
.
C. V =
.
D. V = 6a3 .
2
2
Câu 115. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 6, 12, 24.
B. 8, 16, 32.
C. 2, 4, 8.
D. 2 3, 4 3, 38.
Câu 116. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 3.
C. 0.
D. 1.
Câu 117. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (2; 2).
C. (1; −3).
D. (−1; −7).
Trang 9/11 Mã đề 1
Câu 118. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình tam giác.
C. Hình lăng trụ.
D. Hình chóp.
Câu 119. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = −18.
D. y(−2) = 6.
Câu 120. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m ≥ .
C. m < .
D. m > .
4
4
4
4
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 121. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2).
C. [2; +∞).
D. (−∞; 2].
π π
3
Câu 122. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. −1.
C. 7.
D. 3.
Câu 123. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).
D.
log 2x
là
Câu 124. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1 − 2 ln 2x
1
0
.
B. y0 =
.
D.
A. y0 = 3
.
C.
y
=
x ln 10
x3
2x3 ln 10
Câu 125. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 4 mặt.
C. 3 mặt.
D.
1
Câu 126. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; +∞).
C. (−∞; 3).
D.
(−∞; 2).
y0 =
1 − 4 ln 2x
.
2x3 ln 10
6 mặt.
(1; 3).
Câu 127. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
3
!
1
B. Hàm số đồng biến trên khoảng ; 1 .
3
!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3
Câu 128.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
A.
Z
4x + 1
bằng?
Câu 129. [1] Tính lim
x→−∞ x + 1
A. 2.
B. −4.
C. −1.
D. 4.
Câu 130. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−3; 1].
C. [−1; 3].
D. [1; +∞).
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D
1.
3.
B
7.
9.
D
D
C
B
12.
C
D
B
D
14.
B
16.
B
D
18.
C
17.
C
10.
13.
15.
4.
8.
B
11.
C
6.
C
5.
2.
19. A
20.
C
21. A
22.
C
24.
C
23.
25.
C
26. A
B
27.
D
28.
29.
D
30.
D
32.
D
31.
B
D
33.
35.
B
34.
B
36.
B
38.
37. A
39.
C
41. A
43.
C
C
42.
C
44.
C
46.
47. A
48.
49.
D
51.
B
52.
C
B
54.
55.
B
56.
57.
D
58. A
59.
D
60.
D
B
D
C
62. A
B
64.
63. A
67.
D
50. A
53.
65.
D
40.
45. A
61.
C
B
66.
68.
C
1
D
B
D
70.
C
69.
71.
D
D
72. A
73.
C
74.
D
75.
C
76.
D
77.
B
78. A
79. A
80.
D
81.
83.
82.
85. A
86. A
87. A
88.
89.
D
90.
91.
D
92.
B
D
B
D
96. A
98.
B
99. A
101.
D
94.
C
95. A
97.
B
84.
C
93.
C
B
103.
100.
C
102.
C
104.
C
105. A
D
B
106. A
107.
D
108. A
109.
B
110. A
111.
B
112. A
113.
B
114.
C
115. A
116.
C
117. A
118.
119.
C
120. A
121.
C
122. A
123.
B
124. A
125.
B
126. A
127.
129.
C
D
2
B
128.
B
130.
B