Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (770)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.41 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 2. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + 2 sin 2x.
C. 1 + 2 sin 2x.

D. −1 + sin x cos x.

Câu 3. [2D1-3] Tìm giá trị của tham số m để f (x) = −x + 3x + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. m > − .
C. m ≤ 0.
D. − < m < 0.
4
4


0 0 0 0
Câu 4. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A B C D , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 1).
3

2

Câu 5. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log √2 x.
A. y = log π4 x.
C. y = log 14 x.

D. y = loga x trong đó a =


3 − 2.

Câu 6. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
C. .
A. 5.
B. 5.
D. 25.
5
x−2 x−1

x
x+1
Câu 7. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−∞; −3].
D. (−3; +∞).


Câu 8. Tính lim
x→3

A. −3.

x2 − 9
x−3

B. 3.

Câu 9. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.

B. 4.

C. +∞.

D. 6.

C. 6.

D. 10.

Câu 10. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 11. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.
Câu 12. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là

3
3
a
4a 3
a3

2a3 3
A.
.
B.
.
C.
.
D.
.
6
3
3
3
Câu 13. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
Trang 1/10 Mã đề 1


(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 1.

C. 0.

D. 2.

Câu 14. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối



√ chóp S .ABCD là
3

a3 5
a3 6
a 15
3
.
C.
.
D.
.
A. a 6.
B.
3
3
3
Câu 15. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a =
.
C. log2 a = loga 2.
D. log2 a = − loga 2.
loga 2
log2 a

Câu 16. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .

x2 + 3x + 5
Câu 17. Tính giới hạn lim
x→−∞
4x − 1
1
A. 0.
B. .
C. 1.
4
Câu 18. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
c+1
c+2
c+2

1

D. − .
4
D.

3b + 2ac
.
c+3

3

Câu 19. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e.
C. e2 .
x−2
Câu 20. Tính lim
x→+∞ x + 3
A. 2.
B. −3.
C. 1.
Câu 21. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. √ .
B. .
n
n

C.


sin n
.
n

D. e3 .

2
D. − .
3
D.

n+1
.
n

Câu 22. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 12.
C. 4.
D. 10.
Câu 23. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
1
C. lim k = 0 với k > 1.
n

B. lim un = c (Với un = c là hằng số).

D. lim qn = 1 với |q| > 1.

Câu 24. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 6 mặt.
C. 4 mặt.

D. 8 mặt.

Câu 25. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

D. Khối 20 mặt đều.

C. Khối bát diện đều.

Trang 2/10 Mã đề 1


Câu 26.

[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].


C. m ∈ [−1; 0].

q
x+ log23 x + 1+4m−1 =

D. m ∈ [0; 2].

Câu 27. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 13.

D. 9.

Câu 28. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; 1).
C. (−∞; −1).

D. (−1; 1).

Câu 29. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2

2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (3; 4; −4).
C. ~u = (1; 0; 2).
D. ~u = (2; 2; −1).
Câu 30. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 31. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.
D. 9 mặt.


2

Câu 32. [12215d] Tìm m để phương trình 4 x+ 1−x
9
3
B. 0 ≤ m ≤ .
A. 0 ≤ m ≤ .
4
4
Câu 33. Vận tốc chuyển động của máy bay là v(t)
thứ 5 đến giây thứ 15 là bao nhiêu?

A. 2400 m.
B. 1202 m.



− 4.2 x+

1−x2

− 3m + 4 = 0 có nghiệm

3
D. 0 < m ≤ .
4
2
= 6t + 1(m/s). Hỏi quãng đường máy bay bay từ giây
C. m ≥ 0.

C. 1134 m.

D. 6510 m.

d = 30◦ , biết S BC là tam giác đều
Câu 34. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39

a 39
a 39
A.
.
B.
.
C.
.
D.
.
16
26
13
9
Câu 35. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.
.
D.
.
12
24
6

Câu 36. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 37. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 12.
C. 20.
D. 30.
1
2mx + 1
Câu 38. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. 1.
C. −5.
D. −2.
Câu 39. Xét hai câu sau
Trang 3/10 Mã đề 1


Z
(I)

( f (x) + g(x))dx =

Z


f (x)dx +

Z

g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên

hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (I) đúng.

C. Chỉ có (II) đúng.

D. Cả hai câu trên đúng.

Câu 40. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
(1, 01)3
100.(1, 01)3
triệu.
B. m =
triệu.
A. m =
3

(1, 01)3 − 1
100.1, 03
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
x+1
Câu 41. Tính lim
bằng
x→+∞ 4x + 3
1
1
B. 1.
C. 3.
D. .
A. .
3
4
!2x−1
!2−x
3
3
Câu 42. Tập các số x thỏa mãn


5
5

A. (−∞; 1].
B. [3; +∞).
C. [1; +∞).
D. (+∞; −∞).
Câu 43. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 44. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
.
.
B. √
.
C. √
.
D. 2
A. √
a + b2
a2 + b2
a2 + b2
2 a2 + b2
x+2
Câu 45. Tính lim
bằng?

x→2
x
A. 2.
B. 1.
C. 3.
D. 0.
d = 300 .
Câu 46. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
3
3
A. V = 6a .
B. V = 3a 3.
.
D. V =
.
C. V =
2
2
Câu 47. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 7, 2.
C. −7, 2.
D. 0, 8.
Câu 48. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là

A. ln 10.
B. ln 14.
C. ln 4.
D.
log 2x
Câu 49. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 log 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D.
3
2x ln 10
x
x ln 10
x
Câu 50.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
A.
.
B. 1.

C. .
D.
2
2

ln 12.

y0 =

1 − 4 ln 2x
.
2x3 ln 10

3
.
2
Trang 4/10 Mã đề 1


Câu 51. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.

C. 4.

D. 6.

Câu 52. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13

9
5
23
.
B.
.
C.
.
D. − .
A. −
100
100
25
16
2
x
Câu 53. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = 0.
C. M = , m = 0.
D. M = e, m = .
e
e
!
1
1
1

Câu 54. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. .
B. 0.
C. 1.
D. 2.
2
Câu 55. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. Vơ nghiệm.
D. 1 nghiệm.
Câu 56. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
S
H

(ABCD),
S
A
=
a

√ 5. Thể tích khối chóp3 S .ABCD là
3

3
2a 3
4a 3
4a
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 57. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 8 m.
C. 24 m.
D. 16 m.
cos n + sin n
Câu 58. Tính lim
n2 + 1
A. 1.
B. −∞.
C. +∞.
D. 0.

Câu 59. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
π
Câu 60. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 2.
C. T = 3 3 + 1.
D. T = 4.
Câu 61. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có vơ số.
C. Có hai.
D. Có một.
Câu 62. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 9.
B. .
C. .

D. 6.
2
2
Câu 63.√Thể tích của tứ diện đều √
cạnh bằng a


3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
6
4
2
12
Câu 64. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Trang 5/10 Mã đề 1



Câu 65. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. −2.
B. − .
C. 2.
D. .
2
2
Câu 66. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (II) và (III).
log7 16
Câu 67. [1-c] Giá trị của biểu thức
log7 15 − log7
A. −2.
B. 2.

C. (I) và (III).
15
30

D. Cả ba mệnh đề.


bằng
C. 4.

D. −4.

Câu 68. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
B. lim un = c (un = c là hằng số).
n
1
D. lim qn = 0 (|q| > 1).
C. lim = 0.
n
Câu 69. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −3.
C. Không tồn tại.
D. −5.
Câu 70. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
!
"
!
" đây?
5
5
;3 .
D. 2; .
A. [3; 4).

B. (1; 2).
C.
2
2


ab.

2

Câu 71. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 2 − log2 3.
C. 1 − log3 2.

D. 1 − log2 3.

Câu 72. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3

a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
24
6
36
Câu 73. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. −2.
C. 2.
D. 4.
Câu 74. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 2
a3 3
a3 3

a 6
.
B.
.
C.
.
D.
.
A.
48
16
24
48
7n2 − 2n3 + 1
Câu 75. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. 0.
C. - .
D. 1.
3
3
Câu 76. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.
D. {3; 5}.
Trang 6/10 Mã đề 1



Câu 77. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.

A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
1
Câu 78. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 79. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Nhị thập diện đều. C. Bát diện đều.

D. Thập nhị diện đều.

Câu 80. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 1.
C. 2.

D. 3.

Câu 81. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:

A. 64cm3 .
B. 48cm3 .
C. 84cm3 .
D. 91cm3 .
Câu 82.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
A.
xα dx =
+ C, C là hằng số.
B.
dx = x + C, C là hằng số.
α+1
Z
Z
1
C.
dx = ln |x| + C, C là hằng số.
D.
0dx = C, C là hằng số.
x
Câu 83. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.

C. {4; 3}.

D. {3; 4}.

Câu 84. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách

giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C. a 6.
D.
.
2
3
6

Câu 85. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. Vô nghiệm.
Câu 86. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là −1, phần ảo là 4.
Câu 87. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là


3
a 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
12
6
Câu 88. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. a.
C. .

D.
.
3
2
2
Câu 89. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 3.
C. 4.
D. 2.
Câu 90. [1] Đạo hàm của làm số y = log x là
ln 10
1
A. y0 =
.
B. y0 =
.
x
x ln 10

1
C. y0 = .
x

D.

1
.
10 ln x


x+2
Câu 91. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. 3.
D. Vô số.
Trang 7/10 Mã đề 1


2
Câu 92. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
D. m = ± 3.
A. m = ±1.
B. m = ±3.
C. m = ± 2.
3
x −1
Câu 93. Tính lim
x→1 x − 1
A. −∞.
B. 0.
C. 3.
D. +∞.

Câu 94. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2

A. 2e.
B. 2e + 1.
C. .
e
Câu 95. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.

D. 3.

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m ≤ 0.

Câu 96. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.

B. m < 0.

Câu 97. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 2.
C. 1.
D. 3.
Câu 98. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4

x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y z−1
A.
=
=
.
B. = =
.
2
2
2
1 1
1
x y−2 z−3
x−2 y−2 z−3
C. =
=

.
D.
=
=
.
2
3
−1
2
3
4
Câu 99. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. 5.
C. −5.

D. −6.

Câu 100. Tìm m để hàm số y = mx + 3x + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −1.

D. m = −3.

2

3

2


Câu 101. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −10.
C. P = −21.
D. P = 10.
Câu 102. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 8 năm.
D. 9 năm.
Câu 103. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
D. 6, 12, 24.
A. 2, 4, 8.
B. 8, 16, 32.
C. 2 3, 4 3, 38.
Câu 104. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. 3.
D. Vô nghiệm.
Câu 105. Trong các mệnh đề dưới đây, mệnh đề !nào sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !

un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Trang 8/10 Mã đề 1


D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.

Câu 106. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
3a 38
a 38
3a 58
A.
.
B.
.
C.
.

D.
.
29
29
29
29
Câu 107. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (I) đúng.

C. Cả hai đều đúng.

D. Chỉ có (II) đúng.

Câu 108. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
 π
x
Câu 109. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


3 π6
2 π4

1 π3
e .
e .
C.
D.
A. 1.
B. e .
2
2
2
Câu 110. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vơ số.
B. 3.
C. 2.
D. 1.
Câu 111. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
B. lim [ f (x) + g(x)] = a + b.
A. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x)g(x)] = ab.
x→+∞


x→+∞

0

0

0

Câu 112. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.

Câu 113. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. Vô số.
D. 63.
Câu 114. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
A. a .
B.

.
C.
.
D.
.
6
2
3
d = 60◦ . Đường chéo
Câu 115. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6
3
A.
.
B. a 6.
C.
.
D.

.
3
3
3
Trang 9/10 Mã đề 1


Câu 116. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là 4.
Câu 117. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 2.
C. y(−2) = 6.
D. y(−2) = 22.
2−n
bằng
Câu 118. Giá trị của giới hạn lim
n+1
A. 1.
B. −1.
C. 0.
D. 2.
!4x
!2−x
2
3

Câu 119. Tập các số x thỏa mãn


2
"
!
" 3 !
#
#
2
2
2
2
A. − ; +∞ .
B.
; +∞ .
C. −∞; .
D. −∞; .
3
5
5
3
Câu 120. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.

C. y0 = 1 + ln x.

D. y0 = ln x − 1.


Câu 121. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.

D. 4 mặt.

Câu 122. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = (0; +∞).

D. D = R.

C. D = R \ {1}.

Câu 123. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Hai mặt.
C. Bốn mặt.

D. Ba mặt.

Câu 124. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 = 2 x . ln x.
C. y0 = 2 x . ln 2.
D. y0 =
.

A. y0 = x
2 . ln x
ln 2
Câu 125. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. .
C. 7.
D.
.
2
2
Câu 126. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 10.
C. 6.
D. 12.
! x3 −3mx2 +m
1
Câu 127. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m , 0.
C. m ∈ R.
D. m = 0.
Câu 128. Khối đa diện đều loại {5; 3} có số mặt
A. 20.

B. 8.
C. 12.
log2 240 log2 15
Câu 129. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. 3.
C. 4.
Câu 130.
√ Thể tích của khối lăng
√ trụ tam giác đều có cạnh bằng 1 là:
3
3
3
.
B.
.
C. .
A.
4
2
4

D. 30.

D. −8.

3

D.
.
12

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3.

B

4. A

5.

B

6.


D

8.

D

C

7.
9. A

B

10.

11.

D

12.

13.

D

14.

15. A

C

B
D
C

16.

17.

D

18.

B

20.

19. A

C

21.

D

22.

B

23.


D

24.

B

25.

D

26.

27.

B

29.

C

31. A

28.

D

30.

D


32. A

33.

D

35. A
37.

C

34.

C

36.

C

38. A

B

39.

D

40.

41.


D

42.

43.

44.

C

B
C
B

46.

45. A

D

47.

C

48.

B

49.


C

50.

B

51.
53.

D

52. A

B

55. A
57.
59.
61.
63.

D
B
C

C

56.


C

58.

D

60.

D

62.
D

64.

65. A
67.

54.

B
C

66. A
D

68.
1

D



69.

70.

C

C

71.

B

72. A

73.

B

74.

D

76.

D

C


75.
77.

D

78.

79.

D

80.

C

82. A

81. A
83.

B

84.

B

D

85.


C

86. A

87.

C

88.

B

89.

C

90.

B

91.

B

92. A

93.

C


94.

95.

C

96.

97.

B

98.

99.

C

100. A

101.

C

102.

103.

D


D
C
B
D

104. A
D

106.

105. A
107.

D

108.

C

109.

D

110.

C

111. A

112. A


113.

B

114.

115.

B

116.

117. A

118.

119. A

120.

122.
124.
128.

D
B
C

123.


D

125.

C

126.

C

D
C

130. A

2

D
B

127.

D

129.

D




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×