TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 2. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 144.
C. 2.
D. 24.
Câu 3. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 4. Tính lim
x→5
2
A. .
5
x2 − 12x + 35
25 − 5x
B. +∞.
2
C. − .
5
D. −∞.
1
Câu 5. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 1.
C. −2.
D. 2.
Câu 6. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 8.
C. 20.
D. 30.
Câu 7. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có vơ số.
Câu 8. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều rộng
bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 9. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 6.
C. 1.
D. −1.
Câu 10. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 6 mặt.
C. 4 mặt.
D. 8 mặt.
Câu 11. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m > − .
C. m ≤ 0.
D. m ≥ 0.
4
4
1
a
Câu 12. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 1.
C. 4.
D. 7.
Câu 13. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. −7, 2.
C. 72.
D. 0, 8.
Trang 1/10 Mã đề 1
Câu 14. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 27cm3 .
C. 46cm3 .
D. 72cm3 .
Câu 15. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
9
15
6
18
q
Câu 16. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].
Câu 17. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Cả ba đáp án trên.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
√
D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 18. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 19. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.
.
12
4
8
4
Câu 20. Dãy số nào có giới hạn bằng 0?
!n
!n
n3 − 3n
6
−2
2
A. un = n − 4n.
B. un =
.
C. un =
.
D. un =
.
n+1
5
3
Câu 21. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 2; m = 1.
D. M = e−2 + 1; m = 1.
x−3
Câu 22. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. 1.
C. 0.
D. +∞.
d = 300 .
Câu 23. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.3 √
3
√
3a 3
a 3
A. V = 3a3 3.
B. V =
.
C. V =
.
D. V = 6a3 .
2
2
Câu 24. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −7.
C. −5.
D. −3.
1 − n2
Câu 25. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. − .
C. 0.
D. .
3
2
2
3
Câu 26. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 2.
C. y(−2) = 6.
D. y(−2) = 22.
Câu 27. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Trang 2/10 Mã đề 1
Câu 28.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.
f (x)dx = F(x) + C ⇒
!0
f (x)dx = f (x).
f (t)dt = F(t) + C. B.
Z
Z
D.
k f (x)dx = k
Z
f (x)dx, k là hằng số.
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Câu 29. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 30. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
2−n
Câu 31. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. 0.
C. −1.
D. 2.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 32. Tìm m để hàm số y =
x+m
A. 67.
B. 26.
C. 45.
D. 34.
Câu 33. Phát biểu nào sau đây là sai?
1
B. lim √ = 0.
n
A. lim un = c (Với un = c là hằng số).
1
= 0 với k > 1.
D. lim qn = 1 với |q| > 1.
nk
Câu 34. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. [6, 5; +∞).
C. (−∞; 6, 5).
D. (4; 6, 5].
C. lim
d = 60◦ . Đường chéo
Câu 35. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
4a3 6
a3 6
2a3 6
3
D.
A.
.
B.
.
C. a 6.
.
3
3
3
Câu 36. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 37. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
√
A. y = log 41 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log π4 x.
D. y = log √2 x.
Câu 38. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 9 cạnh.
C. 10 cạnh.
Câu 39. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Hai cạnh.
C. Bốn cạnh.
D. 11 cạnh.
D. Năm cạnh.
Câu 40. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là
√ với đáy và S C = a 3.3 √
√
a3 3
a 6
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
9
2
2
Câu 41. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
A. 2 .
B.
.
C.
.
e
2e3
e3
D.
1
√ .
2 e
Trang 3/10 Mã đề 1
Câu 42. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 11 năm.
D. 13 năm.
Câu 43. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng 2n+1.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Câu 44. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.
Câu 45. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 10 năm.
C. 9 năm.
D. 7 năm.
!
!
!
x
1
2
2016
4
. Tính tổng T = f
Câu 46. [3] Cho hàm số f (x) = x
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T =
.
C. T = 2017.
D. T = 1008.
2017
x−2 x−1
x
x+1
Câu 47. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−3; +∞).
C. [−3; +∞).
D. (−∞; −3).
Câu 48. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối bát diện đều.
4x + 1
bằng?
Câu 49. [1] Tính lim
x→−∞ x + 1
A. −4.
B. 2.
C. 4.
√
Câu 50. Xác định phần ảo của số √
phức z = ( 2 + 3i)2 √
A. 7.
B. −6 2.
C. 6 2.
Câu 51. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 10.
C. 8.
D. Khối 12 mặt đều.
D. −1.
D. −7.
D. 6.
Câu 52. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. −6.
D. 3.
Câu 53. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 15, 36.
C. 24.
D. 20.
!
5 − 12x
Câu 54. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Z 2
ln(x + 1)
Câu 55. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. 3.
C. −3.
D. 0.
Trang 4/10 Mã đề 1
Câu 56. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 6
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
48
16
48
24
Câu 57. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
A. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un
= +∞.
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
1 − xy
Câu 58. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.
√
√
√
2 11 − 3
9 11 + 19
18 11 − 29
9 11 − 19
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
A. Pmin =
9
3
9
21
Câu 59. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5}.
C. {2}.
D. {5; 2}.
x−1 y z+1
Câu 60. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 2x − y + 2z − 1 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.
Câu 61. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.
C. 8.
D. 12.
2
m
ln x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 62. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 135.
C. S = 22.
D. S = 24.
5
Câu 63. Tính lim
n+3
A. 2.
B. 3.
C. 0.
D. 1.
2
2
2
1 + 2 + ··· + n
Câu 64. [3-1133d] Tính lim
n3
1
2
A. .
B. +∞.
C. 0.
D. .
3
3
[ = 60◦ , S O
Câu 65. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng
√
2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
x
Câu 66. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 27.
C. 18.
D.
.
2
Câu 67. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
Trang 5/10 Mã đề 1
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.
B. 1.
C. 4.
D. 3.
1
Câu 68. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3.
B. −3 ≤ m ≤ 4.
C. m = −3, m = 4.
D. m = 4.
Câu 69. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp đôi.
C. Tăng gấp 4 lần.
D. Tăng gấp 6 lần.
Câu 70. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 10.
C. 6.
D. 8.
Câu 71. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
"
!
5
5
A. [3; 4).
B. (1; 2).
C.
;3 .
D. 2; .
2
2
√
ab.
Câu 72. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
D. 5.
A. 25.
B. .
C. 5.
5
Câu 73. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
B. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) xác định trên K.
√
Câu 74. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
√
√
Câu 75. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l
√
A. Phần thực là √2 − 1, phần ảo là √3.
B. Phần thực là 2 −√1, phần ảo là − √3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 76. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Thập nhị diện đều. B. Bát diện đều.
C. Nhị thập diện đều.
D. Tứ diện đều.
Câu 77. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 3.
C. 2.
D. 0.
Câu 78. Tìm m để hàm số y = x − 3mx + 3m có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m , 0.
D. m < 0.
3
2
2
Câu 79. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
8
5
7
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 80. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − .
C. − 2 .
2e
e
e
D. −e.
Trang 6/10 Mã đề 1
Câu 81. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 6510 m.
C. 1202 m.
D. 1134 m.
n−1
Câu 82. Tính lim 2
n +2
A. 0.
B. 2.
C. 3.
D. 1.
Câu 83. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 6 mặt.
D. 8 mặt.
x−3 x−2 x−1
x
Câu 84. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (2; +∞).
C. (−∞; 2).
D. (−∞; 2].
Câu 85. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 + 2 sin 2x.
D. 1 − sin 2x.
Câu 86. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 87. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
.
B. 2
.
C. √
.
D. √
.
A. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 88. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a =
.
C. log2 a =
.
D. log2 a = loga 2.
loga 2
log2 a
x2
Câu 89. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = e, m = .
C. M = , m = 0.
D. M = e, m = 1.
e
e
Câu 90. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 3.
C. 1.
D. 0.
Câu 91. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.
D.
.
24
6
12
Câu 92. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 23.
C. 21.
D. 24.
Câu 93. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 1.
B. 2.
C. 2.
D. 10.
Trang 7/10 Mã đề 1
Câu 94. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.
Câu 95. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. .
B. √ .
n
n
Câu 96. Tìm giới hạn lim
A. 2.
2n + 1
n+1
B. 1.
C. 8.
C.
n+1
.
n
C. 3.
D. 5.
D.
sin n
.
n
D. 0.
[ = 60◦ , S A ⊥ (ABCD).
Câu 97. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√chóp S .ABCD là
√ S C là a. Thể tích khối
√
3
3
√
a 2
a3 3
a 2
3
.
C.
.
D.
.
A. a 3.
B.
4
12
6
Câu 98. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 30.
C. 8.
D. 20.
Câu 99. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 100. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 3).
D. A0 (−3; −3; 3).
x+1
Câu 101. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
4
3
C. 1.
D. 3.
Câu 102. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 3.
C. T = e + 1.
D. T = e + .
e
e
Câu 103. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).
B. Cả ba mệnh đề.
Câu 104. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. 1 nghiệm.
B. 2 nghiệm.
C. (I) và (II).
D. (I) và (III).
√
4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. Vơ nghiệm.
D. 3 nghiệm.
Câu 105. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
là
√
3
10a 3
B. 10a3 .
C.
A. 40a3 .
.
D. 20a3 .
3
Trang 8/10 Mã đề 1
Câu 106. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 25 m.
C. 387 m.
D. 1587 m.
Câu 107. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. Vô số.
C. 3.
D. 1.
Câu 108. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1
.
B.
u
=
.
A. un =
n
(n + 1)2
5n − 3n2
C. un =
n2 − 3n
.
n2
D. un =
1 − 2n
.
5n + n2
Câu 109. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −5.
B. −9.
C. −12.
D. −15.
2n − 3
bằng
Câu 110. Tính lim 2
2n + 3n + 1
A. 1.
B. +∞.
C. 0.
D. −∞.
Câu 111. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y−2 z−3
=
.
B.
=
=
.
A. =
2
3
−1
2
2
2
x−2 y−2 z−3
x y z−1
C.
=
=
.
D. = =
.
2
3
4
1 1
1
Câu 112. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
Câu 113. Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
A. .
B.
.
C.
.
4
12
2
√
3
D.
.
4
Câu 114. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = (−2; 1).
C. D = [2; 1].
D. D = R.
2mx + 1
1
Câu 115. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 1.
C. 0.
D. −2.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 116. Cho hình chóp S .ABC có BAC
(ABC). Thể
√ tích khối chóp S .ABC là
√
√
√
a3 2
a3 3
a3 3
2
A.
.
B. 2a 2.
C.
.
D.
.
24
24
12
Câu 117. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
2
Câu 118. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều. C. Khối 12 mặt đều.
!2x−1
!2−x
3
3
Câu 119. Tập các số x thỏa mãn
≤
là
5
5
A. [1; +∞).
B. [3; +∞).
C. (+∞; −∞).
D. Khối tứ diện đều.
D. (−∞; 1].
Trang 9/10 Mã đề 1
Câu 120. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 14 năm.
D. 11 năm.
Câu 121. ZCho hai hàm Zy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f 0 (x)dx =
A. Nếu
Z
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 122. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 24 m.
C. 12 m.
D. 8 m.
Câu 123. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 124. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√
√
√ Thể tích khối chóp S 3.ABC
3
a 2
a3 3
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
12
12
6
4
Câu 125. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −2.
C. x = 0.
D. x = −5.
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 126. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 2.
B. −1.
C. .
D. 1.
2
Câu 127. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối tứ diện đều.
x−2
Câu 128. Tính lim
x→+∞ x + 3
2
A. 1.
B. − .
C. 2.
D. −3.
3
x2 − 5x + 6
Câu 129. Tính giới hạn lim
x→2
x−2
A. 0.
B. 1.
C. 5.
D. −1.
Câu 130. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và√S C bằng
√
√
a 6
a 6
a 6
D.
A.
.
B.
.
C. a 6.
.
6
3
2
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.
2.
4. A
B
5.
6.
C
7. A
D
8.
9.
B
10.
11.
B
12.
13.
B
14.
B
D
B
D
19.
B
20.
D
C
21. A
C
22.
C
17.
C
16.
18.
B
23.
B
24. A
25.
B
26. A
27.
B
28.
D
29. A
30. A
31.
32.
D
33.
34.
D
35.
36.
C
37.
38.
C
39. A
C
D
C
D
40.
B
41. A
42.
B
43.
C
45.
C
44.
C
46.
D
47. A
48.
C
49.
50.
C
51.
52. A
54.
53.
58.
D
B
55.
B
56.
C
C
B
60.
C
57.
B
59.
B
61.
D
62. A
63.
64. A
65.
66.
C
67.
68.
C
69. A
1
D
C
B
D
70.
71.
C
72. A
C
73. A
74.
D
75.
B
77.
76. A
78.
D
79. A
C
80. A
81.
B
82. A
83.
B
84. A
85. A
88.
87.
C
86.
B
89. A
90. A
91.
92. A
93. A
94. A
95.
96. A
97.
98.
B
100.
99.
B
103.
104.
B
105.
106. A
D
109.
C
112. A
C
C
D
D
113.
D
115.
118. A
119. A
D
C
D
117. A
C
121.
122. A
123.
124. A
125. A
126.
B
111.
116. A
120.
C
107. A
108.
114.
D
101. A
C
102.
110.
D
D
128. A
130. A
2
D
C
127.
D
129.
D