TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 2. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n
.
B.
u
=
.
A. un =
n
n2
5n − 3n2
C. un =
n2 + n + 1
.
(n + 1)2
Câu 3. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. −7, 2.
C. 7, 2.
D. un =
1 − 2n
.
5n + n2
D. 0, 8.
Câu 4. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 5. [12221d] Tính tổng tất cả các nghiệm của phương trình x + 1 = 2 log2 (2 x + 3) − log2 (2020 − 21−x )
A. log2 13.
B. log2 2020.
C. 2020.
D. 13.
Câu 6. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
Câu 7. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là −4.
Câu 8. [1] Tính lim
A.
1
.
3
1 − 2n
bằng?
3n + 1
B. 1.
Câu 9. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 30.
C.
2
.
3
C. 20.
Câu 10. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
a3
a3 3
a3 3
A.
.
B.
.
C.
.
4
12
8
x+1
Câu 11. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. 1.
C. .
4
3
!2x−1
!2−x
3
3
Câu 12. Tập các số x thỏa mãn
≤
là
5
5
A. (+∞; −∞).
B. (−∞; 1].
C. [3; +∞).
2
D. − .
3
D. 10.
⊥ (ABC) và (S BC) hợp với
√
a3 3
D.
.
4
D. 3.
D. [1; +∞).
Trang 1/10 Mã đề 1
d = 120◦ .
Câu 13. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
C. 4a.
D. 2a.
A. 3a.
B.
2
Câu 14. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R.
C. D = R \ {1; 2}.
√3
4
Câu 15. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
2
5
B. a 3 .
C. a 3 .
A. a 3 .
2
D. D = (−2; 1).
5
D. a 8 .
Câu 16. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
13
9
5
A. −
.
B.
.
C.
.
D. − .
100
100
25
16
Câu 17. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. a 6.
B. a 3.
C. 2a 6.
D.
.
2
x−2
Câu 18. Tính lim
x→+∞ x + 3
2
A. 1.
B. −3.
C. − .
D. 2.
3
1
Câu 19. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (−∞; 1) và (3; +∞). C. (1; +∞).
D. (1; 3).
Câu 20. Tứ diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.
D. {5; 3}.
Câu 21. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 22. Cho I =
Z
3
x
√
dx =
4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 4.
0
a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d
d
C. P = −2.
D. P = 16.
Câu 23. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; 6, 5].
D. (4; +∞).
√
2
Câu 24. [4-1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. 64.
D. Vô số.
Câu 25.
Z [1233d-2] Mệnh đề nào sau đây sai?
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
A.
Trang 2/10 Mã đề 1
Z
C.
Z
D.
Z
Z
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Câu 26. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√
√
√
√ thẳng BD bằng
b a2 + c2
abc b2 + c2
c a2 + b2
a b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 27. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 15 tháng.
C. 16 tháng.
D. 17 tháng.
Câu 28. [1] Tính lim
x→3
A. 0.
x−3
bằng?
x+3
B. +∞.
C. −∞.
D. 1.
Câu 29. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.
B. 4.
C. 1.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 2.
x−1 y z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. −x + 6y + 4z + 5 = 0.
C. 2x + y − z = 0.
D. 10x − 7y + 13z + 3 = 0.
Câu 30. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Câu 31. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. Cả ba câu trên đều sai.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
2
2
sin x
Câu 32. [3-c]
+ 2cos x √
lần lượt là
√ Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x) = 2
A. 2 và 2 2.
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 3.
Câu 33. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = 21.
C. P = −21.
D. P = −10.
Câu 34. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 8.
C. 30.
D. 20.
cos n + sin n
Câu 35. Tính lim
n2 + 1
A. 1.
B. +∞.
C. 0.
D. −∞.
mx − 4
Câu 36. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 34.
C. 45.
D. 67.
Câu 37. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4e + 2
4e + 2
D. m =
1 − 2e
.
4 − 2e
Trang 3/10 Mã đề 1
Câu 38. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
B. √
.
C. √
.
D. 2
A. √
.
a + b2
a2 + b2
a2 + b2
2 a2 + b2
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 39. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. [−3; +∞).
C. (−3; +∞).
D. (−∞; −3].
Câu 40. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 12.
C. 8.
D. 20.
2
2n − 1
Câu 41. Tính lim 6
3n + n4
2
A. 2.
B. .
C. 1.
D. 0.
3
Câu 42. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 6 mặt.
D. 3 mặt.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 43. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ R.
C. m , 0.
D. m ∈ (0; +∞).
Câu 44. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 120 cm2 .
Câu 45. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lăng trụ tam giác.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 46. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 8π.
C. 32π.
D. 16π.
[ = 60◦ , S O
Câu 47. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S√BC) bằng
√
2a 57
a 57
a 57
.
B. a 57.
C.
.
D.
.
A.
17
19
19
3
Câu 48. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e3 .
C. e2 .
D. e.
Câu 49. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 50. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B.
.
C. −2.
D. −7.
27
Câu 51. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
!
1
1
1
1
A. − ; +∞ .
B. −∞; .
C. −∞; − .
D.
; +∞ .
2
2
2
2
Trang 4/10 Mã đề 1
Câu 52. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −5.
C. x = 0.
D. x = −2.
Câu 53. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vuông góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (1; 0; 2).
C. ~u = (3; 4; −4).
D. ~u = (2; 1; 6).
!
!
!
1
2
2016
4x
Câu 54. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 1008.
C. T = 2016.
D. T =
.
2017
log2 240 log2 15
−
+ log2 1 bằng
Câu 55. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 3.
B. 4.
C. −8.
D. 1.
Câu 56. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
A. lim [ f (x) − g(x)] = a − b.
x→+∞
f (x) a
C. lim
= .
x→+∞ g(x)
b
x→+∞
B. lim [ f (x) + g(x)] = a + b.
x→+∞
D. lim [ f (x)g(x)] = ab.
x→+∞
Câu 57. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng
√
A. 7 3.
B. 8 2.
C. 8 3.
D. 16.
Câu 58. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 10 năm.
C. 8 năm.
D. 9 năm.
Câu 59. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện đều.
Câu 60. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 22016 .
C. 0.
D. e2016 .
Câu 61. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 64cm3 .
D. 91cm3 .
Câu 62. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. Cả ba đáp án trên.
Câu 63. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD
là
√
3
3
a
3
a
3
a3
A. a3 .
B.
.
C.
.
D.
.
9
3
3
Câu 64. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Nhị thập diện đều. C. Tứ diện đều.
D. Bát diện đều.
Trang 5/10 Mã đề 1
Câu 65. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
C. lim+ f (x) = lim− f (x) = +∞.
x→a
D. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
Câu 66. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.
B. 1.
C. 3.
D. 2.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 67. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 2
a3 3
.
B.
.
C.
.
D. 2a2 2.
A.
24
24
12
Câu 68. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a
√
√
a3 15
a3 5
a3 15
a3
.
B.
.
C.
.
D.
.
A.
3
25
25
5
!4x
!2−x
2
3
Câu 69. Tập các số x thỏa mãn
≤
là
3 # 2
#
"
!
"
!
2
2
2
2
A. −∞; .
; +∞ .
B. −∞; .
C. − ; +∞ .
D.
3
5
3
5
0 0 0 0
0
Câu 70.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
.
B.
.
C.
.
D.
.
A.
7
3
2
2
2
Câu 71. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 8.
C. 6.
D. 5.
Câu 72. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
24
6
36
Câu 73. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 6.
C. 4.
D. 3.
Câu 74. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
d = 300 .
Câu 75. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.
√
3
√
3a 3
a3 3
3
3
A. V =
.
B. V = 6a .
C. V = 3a 3.
D. V =
.
2
2
Trang 6/10 Mã đề 1
Câu 76. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tam giác.
Câu 77. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 0.
C. 1.
D. 2.
Câu 78. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
D. Khối 20 mặt đều.
C. Khối tứ diện đều.
Câu 79. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C. a3 .
D.
.
A.
12
6
24
Câu 80. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 81. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {1}.
C. D = R \ {0}.
D. D = (0; +∞).
Câu 82. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3
3
2a 3
a3
a3
4a 3
.
B.
.
C.
.
D.
.
A.
3
3
6
3
1
Câu 83. [1] Giá trị của biểu thức log √3
bằng
10
1
1
B. − .
C. 3.
D. −3.
A. .
3
3
Câu 84. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.
2
3
Câu 85. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 8.
C. 20.
D. 12.
Câu 86. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 4.
C. 5.
D. 6.
Câu 87. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; +∞).
C. (0; 2).
D. (−∞; 2).
1 + 2 + ··· + n
Câu 88. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = 0.
D. lim un = .
2
x−3 x−2
x−3
Câu 89. [12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
1
Câu 90. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R \ {1}.
C. D = (−∞; 1).
D. D = R.
Trang 7/10 Mã đề 1
Câu 91. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 12.
C. 10.
D. 4.
Câu 92. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 6 mặt.
D. 8 mặt.
Câu 93. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Có hai.
D. Khơng có.
Câu 94. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. Vơ nghiệm.
D. 1.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 95. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m ≤ 0.
Câu 96. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là
√
2a3
2a3 3
4a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 97. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. [1; 2].
C. (1; 2).
D. (−∞; +∞).
Câu 98. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Giảm đi n lần.
B. Khơng thay đổi.
C. Tăng lên n lần.
D. Tăng lên (n − 1) lần.
x
Câu 99. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
3
1
B. 1.
C.
.
D. .
A. .
2
2
2
x
Câu 100. [2] Tổng các nghiệm của phương trình log4 (3.2 − 1) = x − 1 là
A. 3.
B. 5.
C. 2.
D. 1.
Câu 101. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 102. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 8 m.
D. 24 m.
Câu 103. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
C.
f (x)dx = f (x).
f (x)dx = F(x) + C.
D. Mọi hàm số liên tục trên (a; b) đều có ngun hàm trên (a; b).
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 104. [3] Cho hàm số f (x) = ln 2017 − ln
x
2016
2017
4035
A. 2017.
B.
.
C.
.
D.
.
2017
2018
2018
Câu 105. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 1.
C. 0.
D. 3.
Trang 8/10 Mã đề 1
2
Câu 106. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
B.
.
C. 2 .
A. 3 .
3
e
2e
e
Câu 107. Tính lim
x→3
A. −3.
x2 − 9
x−3
B. 3.
C. +∞.
D.
1
√ .
2 e
D. 6.
Câu 108. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −2 ≤ m ≤ 2.
C. −3 ≤ m ≤ 3.
D. m ≤ 3.
Câu 109. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 12.
C. 10.
D. 8.
Câu 110.
√ Thể tích của tứ diện đều
√cạnh bằng a
a3 2
a3 2
A.
.
B.
.
12
6
√
a3 2
C.
.
2
√
a3 2
D.
.
4
3
2
x
Câu 111. [2]
√ Tìm m để giá trị lớn nhất
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8
B. m = ± 3.
C. m = ±3.
D. m = ±1.
A. m = ± 2.
n−1
Câu 112. Tính lim 2
n +2
A. 2.
B. 0.
C. 1.
D. 3.
Câu 113. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 13 năm.
D. 10 năm.
2n − 3
bằng
Câu 114. Tính lim 2
2n + 3n + 1
A. 1.
B. −∞.
C. 0.
D. +∞.
tan x + m
Câu 115. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. [0; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (1; +∞).
D. (−∞; 0] ∪ (1; +∞).
x+1
Câu 116. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
6
3
2
Câu 117. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√
√ chóp S .ABCD là
3
3
a 3
a3 2
a3 6
a 3
A.
.
B.
.
C.
.
D.
.
24
48
16
48
1 − xy
Câu 118. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√ = x + y.
√
√
√
9 11 + 19
18 11 − 29
9 11 − 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9
21
9
3
Câu 119. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. m ≥ 0.
C. m ≤ 0.
D. − < m < 0.
4
4
Trang 9/10 Mã đề 1
Câu 120. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
1
Câu 121. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
Z 1
Câu 122. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
B. 0.
C. .
D. 1.
A. .
2
4
Câu 123. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
2
4
8
√
√
Câu 124. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
A. m ≥ 0.
B. 0 ≤ m ≤ .
4
4
4
1
Câu 125. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
3a
Câu 126. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
2a
a
a 2
a
A.
.
B. .
C.
.
D. .
3
4
3
3
π π
Câu 127. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 3.
D. 7.
Câu 128. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
2
2
C. Khối tứ diện đều.
D. Khối lập phương.
Câu 129. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
;3 .
A. (1; 2).
B.
C. 2; .
D. [3; 4).
2
2
√
ab.
1
Câu 130. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
2.
3.
B
4.
D
C
5. A
6.
D
7. A
8.
D
9. A
10.
11. A
12.
13.
14.
B
C
15.
B
20. A
21.
B
22.
23.
C
25.
D
26. A
C
28. A
29.
C
30.
31.
C
32.
33.
C
34. A
35.
C
36.
B
D
40. A
41.
D
42.
43. A
44.
45. A
47.
48. A
49.
52. A
53.
B
58.
D
D
B
C
D
B
C
57.
D
59.
D
61.
C
C
63.
B
64. A
D
65. A
66.
68.
B
55.
C
60.
B
51. A
C
56.
D
38. A
39.
50.
B
24. A
27.
62.
B
18. A
19.
54.
D
16. A
17. A
37.
C
D
67.
B
69.
1
B
C
70.
71. A
B
C
74.
76.
78.
75. A
D
77.
D
81. A
82. A
83.
84.
D
85.
86.
D
87. A
88.
D
89.
90. A
B
D
94.
96.
98. A
93.
B
95.
B
C
B
103. A
105.
106.
C
107.
108.
C
109.
110. A
C
D
B
111. A
B
114.
113.
B
115.
C
B
117.
118.
D
C
B
119. A
121.
B
122. A
124.
D
101. A
C
120.
C
B
104.
116.
C
91.
99.
102. A
112.
B
97.
C
100.
B
79. A
B
80.
92.
D
73.
72. A
D
123.
C
126. A
128.
D
130.
D
2
C
125.
B
127.
B
129.
B