TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
1
Câu 1. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. 1.
C. −1.
D. −2.
Câu 2. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. .
B.
.
C. 2.
D. 1.
2
2
Câu 3. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 24.
C. 15, 36.
D. 3, 55.
Câu 4. Bát diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.
x+1
bằng
Câu 5. Tính lim
x→−∞ 6x − 2
1
A. 1.
B. .
6
C. {3; 4}.
C.
1
.
3
D. {3; 3}.
D.
1
.
2
1
Câu 6. [1] Giá trị của biểu thức log √3
bằng
10
1
1
B. .
C. 3.
D. −3.
A. − .
3
3
Câu 7. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 21.
C. 23.
D. 22.
Câu 8. Cho z là √
nghiệm của phương trình x2 + x + 1 = 0. Tính P = √
z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =
.
B. P = 2i.
C. P =
.
D. P = 2.
2
2
Câu 9. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD. Cho
hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 32π.
C. 16π.
D. 8π.
Câu 10. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 30.
C. 12.
Câu 11. Tính mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i. √
C. |z| = 2 5.
A. |z| = 5.
B. |z| = 5.
2n2 − 1
Câu 12. Tính lim 6
3n + n4
2
A. 0.
B. .
C. 1.
3
Câu 13. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−1; 1).
C. (1; +∞).
D. 8.
2
D. |z| =
√4
5.
D. 2.
D. (−∞; −1).
Câu 14. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m ≥ 0.
C. m > − .
D. m ≤ 0.
4
4
Trang 1/10 Mã đề 1
Câu 15. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là
√
a3
a3 3
a3 3
3
A.
.
B.
.
C. a .
D.
.
3
9
3
Câu 16. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
= 0.
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
= −∞.
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
Câu 17. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. m ≤ 3.
C. −3 ≤ m ≤ 3.
D. −2 ≤ m ≤ 2.
Câu 18. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
0 0 0 0
0
Câu 19.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.
.
7
2
3
2
Câu 20. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
C. − .
A. −e.
B. − .
2e
e
Câu 21. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. [6, 5; +∞).
D. (4; +∞).
Câu 22. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 6.
D. 8.
C. 4.
D. −
1
.
e2
Câu 23. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. [1; 2].
C. [−1; 2).
D. (1; 2).
Câu 24. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Bát diện đều.
C. Thập nhị diện đều.
D. Tứ diện đều.
Câu 25. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
120.(1, 12)3
100.1, 03
A. m =
triệu.
B. m =
triệu.
3
(1, 12) − 1
3
100.(1, 01)3
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Câu 26. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trang 2/10 Mã đề 1
Trong hai câu trên
A. Chỉ có (I) đúng.
B. Chỉ có (II) đúng.
C. Cả hai câu trên đúng. D. Cả hai câu trên sai.
Câu 27.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
A.
.
B.
.
C.
.
2
4
12
Câu 28.√Thể tích của tứ diện đều √
cạnh bằng a
√
3
3
a 2
a 2
a3 2
A.
.
B.
.
C.
.
6
2
4
Câu 29. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể
là:
A. 64cm3 .
B. 72cm3 .
C. 27cm3 .
Câu 30. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
c+2
c+3
c+2
cos n + sin n
Câu 31. Tính lim
n2 + 1
A. −∞.
B. +∞.
C. 1.
Câu 32.√Biểu thức nào sau đây khơng có nghĩa
A. (− 2)0 .
B. (−1)−1 .
C. 0−1 .
D.
3
.
4
√
a3 2
D.
.
12
tích của khối lập phương đó
D. 46cm3 .
D.
3b + 3ac
.
c+1
D. 0.
D.
√
−1.
−3
Câu 33. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|
√
√
√
12 17
.
B. 68.
A.
C. 34.
D. 5.
17
1
Câu 34. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 1.
C. 3.
D. 4.
Câu 35. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.
C. y0 = x + ln x.
D. y0 = 1 − ln x.
Câu 36. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1202 m.
C. 1134 m.
D. 6510 m.
Câu 37. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √
√
√
a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
8
4
1
Câu 38. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
Câu 39. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −6.
C. 3.
D. −3.
Câu 40. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 41. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Trang 3/10 Mã đề 1
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 42. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 43. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
B. 5.
C. .
A. 5.
5
Câu 44. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. Không tồn tại.
C. 0.
√
D. 25.
D. 13.
Câu 45. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) =
.
C. f 0 (0) = 10.
D. f 0 (0) = 1.
ln 10
Câu 46. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m < .
D. m ≥ .
4
4
4
4
Câu 47. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√
√ hình chóp S .ABCD với mặt
2
2
2
a 2
a 7
11a
a2 5
A.
.
B.
.
C.
.
D.
.
4
8
32
16
Câu 48.
√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 5.
C. 1.
D. 2.
Câu 49. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
π
Câu 50. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
3 π6
2 π4
1 π
A. 1.
B.
e .
C.
e .
D. e 3 .
2
2
2
!
1
1
1
Câu 51. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
B. 2.
C. .
D. +∞.
A. .
2
2
Câu 52. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = 0.
C. x = −8.
D. x = −5.
Câu 53. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 6, 12, 24.
C. 2, 4, 8.
D. 8, 16, 32.
Câu 54. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lăng trụ.
C. Hình tam giác.
D. Hình lập phương.
Câu 55. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 56. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 1.
B. 2.
C. 10.
D. 2.
Trang 4/10 Mã đề 1
Câu 57. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 = 2 x . ln 2.
C. y0 =
.
A. y0 = x
2 . ln x
ln 2
Câu 58. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 4.
C. 2.
D. y0 = 2 x . ln x.
D. −4.
Câu 59. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 16 tháng.
C. 15 tháng.
D. 18 tháng.
Câu 60.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 61. Dãy số nào sau đây có giới hạn khác 0?
1
1
B. .
A. √ .
n
n
C.
sin n
.
n
D.
n+1
.
n
Câu 62. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (0; 2).
C. (−∞; 1).
D. (2; +∞).
π
Câu 63. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
B. T = 4.
C. T = 2.
D. T = 3 3 + 1.
A. T = 2 3.
2n − 3
Câu 64. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. −∞.
C. 1.
D. +∞.
Câu 65. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.
C. 30.
D. 12.
Câu 66. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ±1.
B. m = ± 3.
C. m = ±3.
D. m = ± 2.
Câu 67. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có vơ số.
log2 240 log2 15
−
+ log2 1 bằng
Câu 68. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 4.
B. 1.
C. −8.
D. 3.
Câu 69. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 70.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.
A.
Z
C.
1
dx = ln |x| + C, C là hằng số.
x
xα+1
B.
x dx =
+ C, C là hằng số.
α+1
Z
D.
0dx = C, C là hằng số.
α
Câu 71. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 4 mặt.
C. 6 mặt.
D. 8 mặt.
Trang 5/10 Mã đề 1
5
Câu 72. Tính lim
n+3
A. 0.
B. 2.
C. 1.
D. 3.
x−1 y z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. −x + 6y + 4z + 5 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 73. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Câu 74. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục thực.
1
ln x p 2
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 75. Gọi F(x) là một nguyên hàm của hàm y =
x
3
8
8
1
1
B. .
C. .
D. .
A. .
3
3
9
9
1 − 2n
Câu 76. [1] Tính lim
bằng?
3n + 1
1
2
2
C. .
D. .
A. 1.
B. − .
3
3
3
Câu 77. Dãy! số nào có giới hạn bằng 0?
!n
n
6
n3 − 3n
−2
2
A. un =
.
B. un =
.
C. un = n − 4n.
D. un =
.
5
n+1
3
Câu 78. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 12.
C. ln 10.
D. ln 14.
Câu 79. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. −5.
C. 6.
2
D. 5.
! x3 −3mx2 +m
1
Câu 80. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m = 0.
C. m ∈ R.
D. m , 0.
Câu 81. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 20a3 .
C. 40a3 .
D. 10a3 .
3
Câu 82. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều. D. Khối 12 mặt đều.
Câu 83. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 2.
C. y(−2) = 6.
D. y(−2) = 22.
4x + 1
Câu 84. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −1.
C. 2.
D. −4.
1
Câu 85. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = −ey + 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
Trang 6/10 Mã đề 1
Câu 86. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 10.
C. 8.
D. 6.
Câu 87. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 64.
B. 96.
C. 82.
D. 81.
8
x
Câu 88. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
4
Câu 89. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
7
5
5
A. a 3 .
B. a 3 .
C. a 8 .
√3
a2 bằng
2
D. a 3 .
Câu 90. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 8 m.
C. 12 m.
D. 16 m.
x−2
Câu 91. Tính lim
x→+∞ x + 3
2
A. 2.
B. −3.
C. − .
D. 1.
3
Câu 92. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (−∞; 2).
C. (0; 2).
D. (0; +∞).
Câu 93. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
B. aα+β = aα .aβ .
C. aαβ = (aα )β .
D. aα bα = (ab)α .
A. β = a β .
a
Câu 94. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 3.
C. 1.
D. 2.
Câu 95. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m
√
A. 8 2.
B. 7 3.
C. 8 3.
D. 16.
Câu 96. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là 4.
3
2
Câu 97. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
A. 3 − 4 2.
B. −3 + 4 2.
C. 3 + 4 2.
√
D. −3 − 4 2.
Câu 98. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
D. Khối 12 mặt đều.
C. Khối bát diện đều.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
B. 26.
C. 45.
D. 67.
Câu 99. Tìm m để hàm số y =
A. 34.
Câu 100. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 10.
C. 27.
D. 12.
Trang 7/10 Mã đề 1
!4x
!2−x
2
3
Câu 101. Tập các số x thỏa mãn
≤
là
3 #
2
!
"
!
"
2
2
2
; +∞ .
B. −∞; .
C. − ; +∞ .
A.
5
3
3
2n + 1
Câu 102. Tính giới hạn lim
3n + 2
1
2
A. 0.
B. .
C. .
2
3
x
Câu 103. [12211d] Số nghiệm của phương trình 12.3 + 3.15 x − 5 x = 20 là
A. 1.
B. Vô nghiệm.
C. 2.
#
2
D. −∞; .
5
D.
3
.
2
D. 3.
x2 −4x+5
Câu 104. [2] Tổng các nghiệm của phương trình 3
= 9 là
A. 5.
B. 3.
C. 2.
D. 4.
Câu 105. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 4.
D. 10.
C. 6.
Câu 106. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
B.
f (x)dx = f (x).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Câu 107. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; 8).
C. A(−4; −8)(.
D. A(4; −8).
Câu 108. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 9 mặt.
Câu 109. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 6.
C. 2.
D. 1.
1 3
Câu 110. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x − mx2 − (m + 6)x + 1 ln đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. m = 4.
C. −3 ≤ m ≤ 4.
D. m = −3.
2x + 1
Câu 111. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. .
C. 1.
D. 2.
2
Câu 112. Phát biểu nào sau đây là sai?
1
A. lim un = c (un = c là hằng số).
B. lim k = 0.
n
1
C. lim = 0.
D. lim qn = 0 (|q| > 1).
n
Câu 113. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 21.
C. P = −21.
D. P = 10.
2
1−n
Câu 114. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. − .
C. .
D. 0.
2
2
3
Câu 115. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 24.
C. 144.
D. 4.
Trang 8/10 Mã đề 1
Câu 116. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√ là
√
3
3
3
3
a 3
4a 3
8a 3
8a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
Câu 117. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m < 0.
Câu 118. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.
B. m ≤ 0.
x+2
bằng?
Câu 119. Tính lim
x→2
x
A. 0.
B. 2.
C. 1.
D. 3.
Câu 120. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là √
√
√
a3 3
a3 3
2a3 3
.
B.
.
C.
.
D. a3 3.
A.
3
6
3
Câu 121. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 5 mặt.
D. 4 mặt.
Câu 122. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
d = 30◦ , biết S BC là tam giác đều
Câu 123. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
26
16
13
Câu 124. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
5
13
23
.
B.
.
C. − .
D.
.
A. −
100
25
16
100
Câu 125. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m < 0.
C. m , 0.
D. m > 0.
Câu 126. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
f (x) a
C. lim [ f (x)g(x)] = ab.
D. lim
= .
x→+∞
x→+∞ g(x)
b
Câu 127. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
với
đáy
và
S
C
=
a
3. √
Thể tích khối chóp S .ABC√là
√
√
3
3
a 3
a 6
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
2
12
4
9
Câu 128. Phát biểu nào sau đây là sai?
1
A. lim un = c (Với un = c là hằng số).
B. lim √ = 0.
n
Trang 9/10 Mã đề 1
1
= 0 với k > 1.
nk
Câu 129. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có một hoặc hai.
C. lim qn = 1 với |q| > 1.
D. lim
Câu 130. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = 0.
C. m = −2.
D. m = −3.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
3.
5.
C
B
2.
C
4.
C
6. A
D
8.
D
10. A
11.
D
12. A
13.
7.
B
14.
C
15. A
16.
C
17.
C
C
18.
B
19.
20.
B
21.
22.
B
23. A
24.
C
25.
26.
C
27.
28.
D
C
31.
32.
C
33. A
B
35.
36.
38.
D
40. A
D
44.
46.
C
D
B
C
39.
D
41.
D
43.
D
45. A
C
47.
B
48.
B
37.
B
42.
D
29.
30.
34.
B
D
B
49. A
50.
C
51.
B
52.
C
53.
B
54.
C
55.
D
56. A
57.
B
58. A
59.
B
60.
62.
61.
D
63.
B
64. A
B
65.
66.
68.
D
D
C
67. A
69.
C
1
B
70.
B
72. A
71.
C
73.
C
C
74.
B
75.
76.
B
77.
78.
80.
D
B
82.
D
79.
B
81.
B
83. A
84. A
85. A
86.
C
88. A
90.
D
87.
D
89.
D
91.
D
92. A
93. A
94. A
95.
D
96.
97.
98. A
B
101.
102.
C
104.
C
103. A
D
106.
105.
C
B
C
107.
B
109.
B
111.
110. A
112.
114.
D
99. A
100. A
108.
D
D
B
D
113.
C
115.
C
116. A
117.
118. A
119.
D
B
121.
D
122. A
123.
D
124. A
125.
120.
C
126.
D
128.
C
130.
C
127.
129.
2
C
B
D