Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt cao1 (816)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.46 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
B. y = log √2 x.
A. y = loga x trong đó a = 3 − 2.
C. y = log 14 x.
D. y = log π4 x.
1
Câu 2. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
(−∞; +∞)
A. m ∈ (0; +∞).
B. m , 0.
C. m = 0.

! x3 −3mx2 +m
nghịch biến trên khoảng
D. m ∈ R.

Câu 3. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
2a


a
8a
.
B.
.
C.
.
D. .
A.
9
9
9
9
3

Câu 4. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e2 .
C. e3 .

D. e5 .

Câu 5. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3

2a3 3
5a3 3
a3 3
4a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 6. Tìm m để hàm số y =
x+m
A. 67.
B. 26.
C. 34.
D. 45.
Câu 7. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.




5 13
A.
.
B. 26.
C. 2.
D. 2 13.
13
Câu 8. Mệnh đề! nào sau đây sai?
Z
0
A.
f (x)dx = f (x).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 9. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 0.

C. 3.

D. 2.

Trang 1/10 Mã đề 1



Câu 10. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


3
πa 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
6
6
2
Câu 11. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1

1
1
A. m > .
B. m ≥ .
C. m ≤ .
D. m < .
4
4
4
4
Câu 12. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 27.
C. 12.
D. 18.
2
Câu 13. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d song song với (P).
C. d nằm trên P.
D. d nằm trên P hoặc d ⊥ P.
Câu 14. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
2a3 3
a3
4a3 3
a3

A.
.
B.
.
C.
.
D.
.
3
6
3
3
x−3
bằng?
Câu 15. [1] Tính lim
x→3 x + 3
A. −∞.
B. 1.
C. +∞.
D. 0.
x−2
Câu 16. Tính lim
x→+∞ x + 3
2
A. 1.
B. − .
C. −3.
D. 2.
3
x−1

Câu 17. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng √
AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
A. 2 3.
B. 2 2.
C. 6.
D. 2.
2x + 1
Câu 18. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. 2.
C. .
D. −1.
2
Z 3
x
a
a
Câu 19. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1

trị P = a + b + c + d bằng?
A. P = 28.
B. P = 16.
C. P = −2.
D. P = 4.
!x
1
Câu 20. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. 1 − log2 3.
B. − log3 2.
C. − log2 3.
D. log2 3.

x2 + 3x + 5
Câu 21. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 0.
B. .
C. − .
D. 1.
4
4
ln x p 2
1
Câu 22. Gọi F(x) là một nguyên hàm của hàm y =

ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .
9
3
9
3
Trang 2/10 Mã đề 1


Câu 23. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
A.
.
B. a 2.

C. 2a 2.
D.
.
4
2
x+2
Câu 24. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. Vô số.
D. 2.
Câu 25. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.

C. Cả hai đều đúng.

D. Cả hai đều sai.

C. 7.

D. 0.

Câu 26. Giá trị giới hạn lim (x2 − x + 7) bằng?

x→−1

A. 5.

B. 9.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e + 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.

Câu 27. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.

Câu 28. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −2.
C. x = 0.

D. x = −5.
q
2
Câu 29. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3

A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
Câu 30. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 10.

C. 6.

D. 12.

Câu 31. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng −∞; .
3
3
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 32. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì

f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

Câu 33. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình tam giác.
C. Hình chóp.

D. Hình lập phương.
Trang 3/10 Mã đề 1


Câu 34. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.

C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 35. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.


2
4n + 1 − n + 2
bằng
Câu 36. Tính lim
2n − 3
A. +∞.
B. 1.

C. 6.

D. 4.

C. 2.

D.

Câu 37. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 9.
C. 0.

3
.

2

D. 13.

Câu 38. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
2
1
1
A.
.
B. .
C.
.
D. .
10
5
10
5
d = 120◦ .
Câu 39. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
C. 2a.
D. 4a.
A. 3a.
B.
2

Câu 40. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 3.
C. T = e + 1.
D. T = e + .
A. T = 4 + .
e
e
0 0 0 0
Câu 41. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
18 11 − 29
2 11 − 3
9 11 + 19
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
A. Pmin =
9
21
3
9
Câu 43.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.

C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 42. [12210d] Xét các số thực dương x, y thỏa mãn log3

d = 60◦ . Đường chéo
Câu 44. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0




3

4a3 6
a3 6
2a
6
A.
.
B.
.
C. a3 6.
D.
.
3
3
3
Câu 45. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (−∞; 2).

D. (0; +∞).
Trang 4/10 Mã đề 1


Câu 46. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; 1).
C. (−∞; −1).

D. (1; +∞).

Câu 47. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 1587 m.
D. 27 m.
2
1−n
Câu 48. [1] Tính lim 2
bằng?
2n + 1
1
1
1
B. − .
C. 0.

D. .
A. .
3
2
2
Câu 49. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 20.
C. 30.
D. 12.
Câu 50. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (II) và (III).

C. Cả ba mệnh đề.

D. (I) và (II).

Câu 51. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?

α

= aβ .
β

a
Câu 52. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?

A. aα+β = aα .aβ .

B. aαβ = (aα )β .

C. aα bα = (ab)α .

D.

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (I) sai.

C. Câu (II) sai.

Câu 53. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 5}.
C. {3; 4}.
Câu 54. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y =
.

B. y = x + .
2x + 1
x
5
Câu 55. Tính lim
n+3
A. 1.
B. 0.

D. Khơng có câu nào
sai.
D. {5; 3}.

C. y = x3 − 3x.

D. y = x4 − 2x + 1.

C. 3.

D. 2.

Câu 56. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tứ giác.
Trang 5/10 Mã đề 1


Câu 57. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 4.

C. 3.

Câu 58. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Hai cạnh.
C. Năm cạnh.

D. 2.
D. Bốn cạnh.

Câu 59. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 60. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có hai.
C. Khơng có.
D. Có một hoặc hai.

Câu 61. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
x − 5x + 6
x−2
B. −1.

D. 9 mặt.

2

Câu 62. Tính giới hạn lim
x→2

A. 0.

C. 5.

D. 1.

Câu 63. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1202 m.
C. 1134 m.
D. 6510 m.
x−1 y z+1
Câu 64. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =


2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.
Câu 65. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 5.

C. 3.

D. 4.

Câu 66. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 4.

C. 10.

D. 6.

Câu 67. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).

D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 68. Giá trị của lim(2x2 − 3x + 1) là
A. +∞.

x→1

B. 0.

C. 1.

D. 2.

Câu 69. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −21.
C. P = 10.
D. P = −10.
Trang 6/10 Mã đề 1


Câu 70. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≤ 0.
C. m ≥ 0.
D. − < m < 0.
A. m > − .
4
4

Câu 71. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có một.
C. Có hai.
D. Khơng có.
Câu 72. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. − .
C. −2.
D. 2.
2
2
9x
Câu 73. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.
B. 1.
C. .
D. −1.
2



x = 1 + 3t





Câu 74. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
3t
x

=
−1
+
2t
x
=
1
+
7t
x = −1 + 2t
















A. 
B. 
.
D. 

y = 1 + 4t .
y = −10 + 11t . C. 
y=1+t
y = −10 + 11t .
















z = 1 − 5t
z = 6 − 5t
z = 1 + 5t
z = −6 − 5t
Câu 75. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 2
.
B. un =
.

A. un =
2
5n − 3n
5n + n2

C. un =

n2 + n + 1
.
(n + 1)2

D. un =

n2 − 3n
.
n2

Câu 76. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là −1, phần ảo là 4.
tan x + m
Câu 77. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).

B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. [0; +∞).
2

Câu 78. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 2 − log2 3.
C. 1 − log2 3.
Câu 79.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
3
3
3
.
B.
.
C. .
A.
2
12
4
Câu 80. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Bốn mặt.
C. Năm mặt.
Câu 81. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. 4 − 2 ln 2.
 π
x

Câu 82. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


3 π6
1 π3
2 π4
A.
e .
B. e .
C.
e .
2
2
2

D. 3 − log2 3.

3
D.
.
4
D. Hai mặt.
D. e.

D. 1.
Trang 7/10 Mã đề 1


Câu 83. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?

A. 2 nghiệm.
B. 1 nghiệm.
C. Vơ nghiệm.
D. 3 nghiệm.

Câu 84. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 6
a 2
.
B.
.
C.
.
D.
.
A.
6
6
36
18
Câu 85. Khối lập phương thuộc loại
A. {5; 3}.

B. {4; 3}.

C. {3; 4}.

Câu 86. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
2
3
Câu 87. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln x.
B. y0 = x
.
2 . ln x

C. y0 =

1
.
ln 2

D. {3; 3}.
D. V = S h.

D. y0 = 2 x . ln 2.


Câu 88. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. 2e4 .
C. −2e2 .
D. −e2 .
un
Câu 89. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. −∞.
C. 1.
D. 0.
Câu 90. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

B. 1.

C. +∞.

D. 3.

Câu 91. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
3b + 3ac
.
B.

.
C.
.
D.
.
A.
c+2
c+3
c+1
c+2
a
1
Câu 92. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 1.
C. 7.
D. 4.
Câu 93. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 11 cạnh.

C. 9 cạnh.

D. 12 cạnh.
π
Câu 94. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3


trị của biểu thức T = a + b 3.


A. T = 2.
B. T = 2 3.
C. T = 4.
D. T = 3 3 + 1.
Câu 95. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 3.
C. Vô số.
D. 1.
Câu 96. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 40 .(3)10
C 20 .(3)30
C 10 .(3)40
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
1

Câu 97. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
Trang 8/10 Mã đề 1


Câu 98. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 6.

B. −1.

3

C. 4.

Câu 99. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. −e.
C. − .
2e
e

Z


6
3x + 1

1

. Tính

f (x)dx.
0

D. 2.

D. −

1
.
e2

Câu 100. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C.

.
D. a3 .
12
6
24
Câu 101. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
D. log2 a =
.
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
loga 2
log2 a
Câu 102. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m√2 + 1)2 x trên [0; 1] bằng 8√
A. m = ±1.
B. m = ±3.
C. m = ± 3.
D. m = ± 2.
Câu 103. Tính lim
2
A. - .
3

7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 1.


C.

7
.
3

D. 0.

Câu 104. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là

√ với đáy và S C = a 3.3 √
3
a 3
2a3 6
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
4
2
9

12
Câu 105. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. 3n3 lần.
C. n3 lần.
D. n2 lần.
Câu 106. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 107. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = (−2; 1).
C. D = R.
2

D. D = R \ {1; 2}.

Câu 108. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; 8).
C. A(4; −8).
D. A(−4; −8)(.
Câu 109. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
1
C. lim k = 0 với k > 1.
n

B. lim qn = 1 với |q| > 1.


D. lim un = c (Với un = c là hằng số).
!
x+1
Câu 110. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016
A.
.
B. 2017.
C.
.
D.
.
2018
2018
2017
log7 16
Câu 111. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. 4.
B. −4.
C. −2.
D. 2.
Trang 9/10 Mã đề 1



Câu 112. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 5%.
C. 0, 7%.
D. 0, 6%.
x+1
bằng
Câu 113. Tính lim
x→+∞ 4x + 3
1
1
A. .
B. 3.
C. .
D. 1.
3
4


Câu 114. √Tìm giá trị lớn nhất của
hàm
số
y
=
x
+

3
+
6−x


B. 2 3.
C. 3.
D. 3 2.
A. 2 + 3.
Câu 115. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
15
6
9
Câu 116. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.

B. 212 triệu.
C. 220 triệu.
D. 216 triệu.
Câu 117. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. −1.
C. 2.

D. 1.

Câu 118. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√ S .ABCD là

3
3

a
3
a
2
a3 3
.
B. a3 3.
C.
.
D.
.
A.

4
2
2
1
Câu 119. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = −e + 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.
Câu 120. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 10.

C. 12.

Câu 121. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 − sin 2x.
C. 1 + 2 sin 2x.
Câu 122. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m ≥ 0.
C. m > 1.
2−n

Câu 123. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 0.
C. −1.

D. 8.
D. −1 + sin x cos x.
D. m > −1.

D. 1.

Câu 124. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. −3.
C. 0.
D. 3.
2n + 1
Câu 125. Tìm giới hạn lim
n+1
A. 3.
B. 2.
C. 1.
D. 0.
Câu 126. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 18 lần.

D. Tăng gấp 3 lần.
Trang 10/10 Mã đề 1


log 2x

Câu 127. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 2 log 2x
1
1 − 4 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
x
2x ln 10
2x3 ln 10
1
Câu 128. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.

C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 129. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 130. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.
4.

3. A
5.


D

7. A
D

9.
11.

C

8.

C

10. A

D

14.

15.

D

16. A

17. A

18.
D


21.

C
D

23.

22.

C
D

24.

27. A

28. A
B

B

30. A
C

32.

B

C


34. A

35.

C

36.

37.

C

38. A

39.

B
C

26.

33.

C

20.

25. A


31.

D

12.

C

19.

D

6.

13.

29.

C

B

40.

B
B

41. A

42.


C

43. A

44.

C

45.

B

46. A

47.
49.

D

48.

B

51.

D

50.


D

52.

D

53.

B

54. A

55.

B

56. A

57.

B

58. A

C

59.

B


60.

D

62.

B

63.

D

65.

D

64.

D

66. A
68.

67. A
B

69.
1

B



70. A

71.
C

72.

C

73.

B
B

74.

B

75.

76.

B

77. A

78.


B

79.

D

81.

D

80. A
82.

83. A

C
D

84.
86.

85.

C

88.

D

90. A


B

87.

D

89.

D

91. A

92.

C

93. A

94.

C

95. A

96. A

97.

98.


C

B

99. A

100. A

101.

C

102.

D

103. A

104.

D

105.

C

107.

C


106.

C

108. A

109.

B

110. A

111.

B

112.

113.

C

114.

D

116.

117. A

119.

D

123.

C
B

118.

C

120.

C
D

124.

B

126.

B

128.

127. A
129.


B

122.

121. A
125.

C

130.

C

2

D
B



×