Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (682)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.15 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (1; +∞).
C. (−∞; −1).

D. (−∞; 1).

Câu 2. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 1.

Câu 3. [2] Tổng các nghiệm của phương trình 31−x
A. 1 − log2 3.

B. − log2 3.

C. 0.
!x


1
=2+

9
C. − log3 2.

D. 3.

D. log2 3.

Câu 4. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 5. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d nằm trên P.
3

Câu 6. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e3 .
C. e5 .
!
1
1
1

+
+ ··· +
Câu 7. Tính lim
1.2 2.3
n(n + 1)
3
A. 1.
B. .
C. 2.
2
Z 3
x
a
Câu 8. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và

d
0 4+2 x+1
P = a + b + c + d bằng?
A. P = 16.
B. P = 28.
C. P = −2.

D. e2 .

D. 0.
a
là phân số tối giản. Giá trị
d
D. P = 4.


Câu 9. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. 1 + 2 sin 2x.
D. −1 + 2 sin 2x.
x−1
Câu 10. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng √
AB có độ dài bằng

A. 2.
B. 2 3.
C. 6.
D. 2 2.
Câu 11. Khối lập phương thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 4}.

D. {3; 3}.
Trang 1/10 Mã đề 1


Câu 12. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0

của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
36
12
6
Câu 13. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là

C 20 .(3)20
C 20 .(3)30
C 10 .(3)40
C 40 .(3)10
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
Câu 14. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 15. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 4 mặt.
C. 10 mặt.

D. 6 mặt.

Câu 16. Dãy
!n số nào sau đây có giới
!n hạn là 0?
1
5
B.

.
A. − .
3
3

!n
5
D.
.
3

!n
4
C.
.
e
2

Câu 17. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 2.
C. 3.

D. 5.
q
2
Câu 18. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3

A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
Câu 19. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình chóp.
C. Hình lập phương.

D. Hình lăng trụ.

[ = 60◦ , S O
Câu 20. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng


a 57
2a 57
a 57
A.
D.
.
B.
.
C. a 57.
.
17
19
19

Câu 21. Giá trị của lim(2x2 − 3x + 1) là
A. +∞.

x→1

B. 0.

C. 1.

D. 2.
2

Câu 22. Tổng diện tích các mặt của một khối lập phương bằng 54cm .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 27cm3 .
C. 72cm3 .
D. 64cm3 .
2x + 1
Câu 23. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. 1.
C. .
D. 2.
2
!
5 − 12x
Câu 24. [2] Phương trình log x 4 log2

= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. 2.
C. 3.
D. Vô nghiệm.
Trang 2/10 Mã đề 1


ln x p 2
1
Câu 25. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
8
1
A. .
B. .
C. .
D. .
9
9
3
3
Câu 26. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.

C. 20.
D. 30.



x=t




Câu 27. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2

2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 28. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

D. aα+β = aα .aβ .
A. aαβ = (aα )β .
B. aα bα = (ab)α .
C. β = a β .
a
2n − 3
Câu 29. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. 0.
C. −∞.
D. +∞.
Câu 30. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 5 mặt.
C. 3 mặt.

D. 4 mặt.


Câu 31. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 1.
C. 2.
D. 3.
Câu 32. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
(1, 01)3
120.(1, 12)3
triệu.
B. m =
triệu.
A. m =
(1, 01)3 − 1
(1, 12)3 − 1
100.(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
3
Câu 33. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = (−2; 1).
C. D = [2; 1].

D. D = R \ {1; 2}.
log(mx)
Câu 34. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m = 4.
C. m < 0 ∨ m > 4.
D. m < 0.
2

Câu 35. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).

C. (−∞; 0) và (2; +∞). D. (−∞; 2).

Câu 36. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Trang 3/10 Mã đề 1


Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (I) và (II).


x2 − 3x + 3
Câu 37. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 0.
2
x − 12x + 35
Câu 38. Tính lim
x→5
25 − 5x
2
A. +∞.
B. .
5

C. (I) và (III).

D. (II) và (III).

C. x = 3.

D. x = 1.

C. −∞.

2
D. − .
5


Câu 39. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng ; 1 .
A. Hàm số nghịch biến trên khoảng −∞; .
3
3
!
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 40. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −4.
C. 4.

D. −2.

Câu 41. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (2; 2).
C. (0; −2).
D. (1; −3).
1
Câu 42. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).

B. (−∞; 1) và (3; +∞). C. (1; 3).
D. (−∞; 3).
Câu 43. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 1.
B. 3.
C. .
D. .
2
2
1
Câu 44. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3, m = 4.
C. −3 ≤ m ≤ 4.
D. m = −3.
Câu 45. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là −1, phần ảo là 4.
Câu 46. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.


B. 4.

C. 3.

Câu 47. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 2.
C. 1.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.
D. −1.

Câu 48. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 49. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng

A. 7 3.
B. 8 2.

C. 8 3.
D. 16.
Trang 4/10 Mã đề 1


Câu 50. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 6.

C. 12.

Câu 51. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4 − 2e
4e + 2
Câu 52. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 53. Tính lim

x→2
A. 1.

x+2
bằng?
x
B. 2.

C. 0.

D. 8.
D. m =

1 − 2e
.
4e + 2

D. 3.

Câu 54. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 1.

C. 3.


D. 2.

Câu 55. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 3.
C. T = e + .
D. T = e + 1.
e
e
Câu 56. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.
C. 20.
D. 12.
Câu 57. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 5.

B. 25.

2n + 1
Câu 58. Tìm giới hạn lim
n+1
A. 3.
B. 1.


a


5



C.

bằng
5.

C. 0.

D.

1
.
5

D. 2.

Câu 59. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục thực.
D. Trục ảo.
Câu 60.√Thể tích của tứ diện đều √
cạnh bằng a


3

3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
4
6
2
12
Câu 61. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên n lần.
C. Tăng lên (n − 1) lần. D. Không thay đổi.
Câu 62. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Bốn mặt.
C. Hai mặt.

D. Năm mặt.
Trang 5/10 Mã đề 1






x = 1 + 3t




Câu 63. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
1
+
7t
x
=
1
+
3t
x
=
−1
+
2t
x = −1 + 2t

















A. 
.
B. 
C. 
y=1+t
y = 1 + 4t .
y = −10 + 11t . D. 
y = −10 + 11t .
















z = 1 + 5t
z = 1 − 5t
z = −6 − 5t
z = 6 − 5t


Câu 64. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vô nghiệm.
C. 2 nghiệm.
D. 1 nghiệm.
Câu 65. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối lập phương.

Câu 66. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là


a3 5
a3 15
a3 6
A.
.
B.
.
C.
.
D. a3 6.
3

3
3
Câu 67. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(−4; 8).
C. A(4; 8).
D. A(4; −8).
0 0 0 0
0
Câu 68.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 3
a 6
a 6
a 6
.
B.
.
C.
.
D.
.
A.
7
2
3
2

Câu 69.

bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
.
B. .
C.
.
A.
12
4
4


3
D.
.
2

Câu 70. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 144.
C. 2.
D. 4.
x−2 x−1
x
x+1
Câu 71. [4-1212d] Cho hai hàm số y =
+

+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−3; +∞).
D. (−∞; −3].

Câu 72. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 4.
C. 108.
D. 36.
Câu 73. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 1.
C. 0.

D. 3.

Câu 74. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 6%.

C. 0, 5%.
D. 0, 7%.
2

Câu 75. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 1 − log3 2.
C. 3 − log2 3.

D. 2 − log2 3.

1
Câu 76. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Trang 6/10 Mã đề 1


!2x−1
!2−x
3
3
Câu 77. Tập các số x thỏa mãn


5
5

A. (+∞; −∞).
B. [1; +∞).
C. [3; +∞).

D. (−∞; 1].

Câu 78.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
dx = ln |x| + C, C là hằng số.
B.
0dx = C, C là hằng số.
A.
Z x
Z
xα+1
C.
dx = x + C, C là hằng số.
D.
xα dx =
+ C, C là hằng số.
α+1
Câu 79. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
C. .
D.

.
A. a.
B. .
3
2
2
Câu 80. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. 2.
C. 1.
D. +∞.
Câu 81. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD


3
3
3
a
a 3
a 3
A.
.
B.
.
C.
.
D. a3 .

3
9
3
Câu 82. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.
C. 30.
D. 8.
Câu 83. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
B. 2.
C. −2.
D. − .
A. .
2
2
2
−1
Câu 84. [2-c] Giá trị nhỏ nhất của hàm số y = x ln x trên đoạn [e ; e] là
1
1
1
A. − .
B. − .
C. − 2 .
D. −e.
e
2e
e


x2 + 3x + 5
Câu 85. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. 0.
C. 1.
D. − .
A. .
4
4
Câu 86. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
f (x) a
C. lim
= .
D. lim [ f (x) + g(x)] = a + b.
x→+∞ g(x)
x→+∞
b
Câu 87. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 14.

C. ln 4.
D. ln 10.
Câu 88. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
9
5
13
A. −
.
B.
.
C. − .
D.
.
100
25
16
100
5
Câu 89. Tính lim
n+3
A. 2.
B. 0.
C. 3.
D. 1.
Câu 90. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!

8
5
7
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Trang 7/10 Mã đề 1


Câu 91. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 92. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 12.


C. 10.

D. 8.

Câu 93. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
B. m = ±3.
C. m = ±1.
D. m = ± 2.
A. m = ± 3.
Câu 94. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 210 triệu.
C. 220 triệu.
D. 212 triệu.
Câu 95. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 96.
! định nào sau đây là sai?
Z Các khẳng
0

f (x)dx = f (x).

Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.

A.

Z
B.
Z
D.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.

Câu 97. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Bốn mặt.
C. Hai mặt.
D. Ba mặt.

 π
Câu 98. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
1 π3
2 π4
A. 1.
B.
e .
C. e .
D.
e .
2
2
2
Câu 99. Phát biểu nào sau đây là sai?
1
A. lim qn = 1 với |q| > 1.
B. lim k = 0 với k > 1.
n
1
C. lim un = c (Với un = c là hằng số).
D. lim √ = 0.
n
Câu 100. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. 1.

D. Vơ nghiệm.
Câu 101. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > 1.
C. m ≥ 0.

D. m > −1.

Câu 102. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.

D. 10 cạnh.

Câu 103. [1-c] Giá trị của biểu thức
A. 4.

B. −4.

log7 16
log7 15 − log7

C. 9 cạnh.
15
30

bằng

C. 2.


D. −2.
Trang 8/10 Mã đề 1


Câu 104. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. Không tồn tại.
C. −3.

D. −7.

Câu 105. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 106. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường



√ thẳng BD bằng
b a2 + c2
abc b2 + c2
a b2 + c2
c a2 + b2
.
B. √
.

C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 107. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
12
4

12
6
x2 − 5x + 6
Câu 108. Tính giới hạn lim
x→2
x−2
A. 0.
B. 5.
C. −1.
D. 1.
Câu 109. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −1.
C. m = −2.

D. m = −3.

Câu 110. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
5a
8a
2a
.
B. .
C.
.
D.
.

A.
9
9
9
9
Câu 111. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 6 mặt.
D. 3 mặt.
Câu 112. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có hai.
C. Có một hoặc hai.
D. Khơng có.
Câu 113. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 114. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 10 năm.
C. 9 năm.
D. 8 năm.
Câu 115. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?

A. Có vơ số.
B. Khơng có.
C. Có hai.
D. Có một.
Câu 116. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều. D. Tứ diện đều.
Câu 117. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.

C. y0 = x + ln x.

D. y0 = 1 − ln x.

Câu 118. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vuông góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (3; 4; −4).

Trang 9/10 Mã đề 1


Câu 119. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m < 3.
D. m ≥ 3.
Câu 120. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc
45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
A.
.
B. 10a3 .
C. 40a3 .
D. 20a3 .
3
Câu 121. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 1.
C. 2.
D. 0.
tan x + m
Câu 122. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π

0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (−∞; 0] ∪ (1; +∞). C. (1; +∞).
D. [0; +∞).
Câu 123. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
1
3
A. .
B. 1.
C. .
D.
.
2
2
2
1
Câu 124. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
2
1−n
Câu 125. [1] Tính lim 2
bằng?
2n + 1
1
1

1
A. − .
B. .
C. .
D. 0.
2
3
2
Câu 126. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 20.
C. 30.
D. 8.
Câu 127. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
B. 5.
C. 7.
D. .
A.
2
2
x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ

nhất.
A. 2x − y + 2z − 1 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x + y − z = 0.
8
Câu 129. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 81.
C. 96.
D. 82.

Câu 128. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 130. Hàm số nào sau đây khơng có cực trị
x−2
A. y = x3 − 3x.
B. y =
.
2x + 1

1
C. y = x + .
x

D. y = x4 − 2x + 1.

- - - - - - - - - - HẾT- - - - - - - - - -


Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2. A

3.

B

4.

5.

B

6.

C
D

8.

7. A
D


9.

10.

11. A
13.

D

B
C

12.
14. A

B

15.

D

16.

B

17. A

18.

D


19. A

20.

D

21.

B

22.

23.

D

24. A
26.

25. A
27.
29.

C

C

37.


D

32. A

33. A
D

34.

B

36.

B

38.

B

40.

B

41.

C

30.
C


35.

D

28.

B

31.

39.

B

C
D

43.

D

42.

B

44.

B

45. A


46.

D

47. A

48.

D

49.

D

50.

51.

D

52.

B
D

53.

B


54.

C

55.

B

56.

C

57.

B

58.

D

59.

B

60.

D

61. A


62. A

63.

D

64.

C

65.

C

66.

C

67.

C

68.

C

1


69.


C
D

71.
C

73.

D

75.
77.

B

70.

B

72.

B

74.

D

76.


D

78.

D

79. A

80.

B

81. A

82.

B

84.

B

83.

C
D

85.

86.


87.

B

88. A

89.

B

90.
D

91.
C

93.
95. A
97.

B

99. A
103.

D

B


92.

D

94.

D

96.

D

98.

D

100.

101.

C

B

102.
104.

B

105. A


106.

107. A

108.

D
B
D
C

109.

C

110.

112.

C

113.

114.

C

115.


116.

C

117.

118.

C

119.

D

121.

D

120.

D

122.

C

123.

124. A


D
B
C
B

B

125. A

126.

127.

C

128.

B

130.

B

129.

2

D
B




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×