Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (682)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.23 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

x−3
bằng?
Câu 1. [1] Tính lim
x→3 x + 3
A. −∞.
B. 0.

C. 1.

log 2x
Câu 2. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.


3
x ln 10
2x ln 10
x3

D. +∞.

D. y0 =

Câu 3. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −5.
C. 6.

D. −6.

Câu 4. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 8.

D. 30.

2x3

1
.
ln 10

2


C. 12.

Câu 5. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai quyển
sách cùng một môn nằm cạnh nhau là
9
1
2
1
B.
.
C.
.
D. .
A. .
5
10
10
5
Câu 6. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1637
1079
23
.
B.
.
C.
.
D.

.
A.
68
4913
4913
4913

Câu 7. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 108.
C. 4.
D. 36.
2n + 1
Câu 8. Tìm giới hạn lim
n+1
A. 3.
B. 2.
C. 0.
D. 1.
Câu 9. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.

D. 4 mặt.
8
Câu 10. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 96.

C. 82.
D. 81.

Câu 11. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −5.
C. −7.
D. Khơng tồn tại.
x+1
Câu 12. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 1.
D. 3.
3
4
Câu 13. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 14. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac

A.
.
B.
.
C.
.
D.
.
c+1
c+2
c+2
c+3
Câu 15. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 3.
C. 0, 4.
D. 0, 5.
Trang 1/10 Mã đề 1


Câu 16. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m < 0.
C. m , 0.
D. m = 0.
a
1
Câu 17. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là

4 b ln 3
A. 1.
B. 7.
C. 4.
D. 2.
2−n
bằng
Câu 18. Giá trị của giới hạn lim
n+1
A. 1.
B. 2.
C. −1.
D. 0.
Câu 19. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 2.
D. 1.
Câu 20. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 0.
C. 3.

D. 1.

1
Câu 21. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3


một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. −3 ≤ m ≤ 4.
C. m = −3.
D. m = 4.
Câu 22. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 23. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3

a3 3
a3 2
a
3
A.
.
B.
.
C. a3 3.
D.
.
4
2

2
Câu 24. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. 2e2 .
D. −2e2 .
Câu 25. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m ≤ 3.
D. m < 3.
Câu 26. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 6).
C. (2; 4; 4).
D. (2; 4; 3).
Câu 27. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
C.
u(x)
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
d = 300 .
Câu 28. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC

0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho. 3 √

a3 3
3a 3
A. V =
.
B. V = 3a3 3.
C. V =
.
D. V = 6a3 .
2
2
Câu 29. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 6 mặt.
C. 4 mặt.
D. 8 mặt.
Câu 30. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 25.

B. 5.


a

5

1

C. .
5

bằng


D.

5.
Trang 2/10 Mã đề 1



Câu 31. √
Thể tích của khối lập phương có cạnh bằng a 2


2a3 2
A.
.
B. V = a3 2.
C. 2a3 2.
3
Câu 32. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. +∞.
C. 0.

D. V = 2a3 .

D. 2.

Câu 33. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

3
10a
3
A. 20a3 .
B. 10a3 .
C. 40a3 .
D.
.
3
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 34. [3] Cho hàm số f (x) = ln 2017 − ln
x
2016
4035
2017
A. 2017.
B.
.
C.
.
D.
.
2017

2018
2018
Câu 35. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≥ 3.
Câu 36. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:

3
3
3
3
B.
.
C.
.
D.
.
A. .
4
2
4
12
Câu 37. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|




12 17
A.
.
B. 5.
C. 68.
D. 34.
17
Câu 38. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 8.
C. 4.
D. 10.
Câu 39. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có một hoặc hai.
x2 − 12x + 35
Câu 40. Tính lim
x→5
25 − 5x
2
2
A. −∞.
B. − .
C. .
D. +∞.
5
5

Câu 41.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

A.

Z

Câu 42. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {3}.
C. {5}.
D. {2}.
Câu 43. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là

A. 2.
B. 5.
C. 3.

D. 1.
[ = 60◦ , S A ⊥ (ABCD).
Câu 44. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 3
a3 2
a3 2
3
A.
.
B. a 3.
C.
.
D.
.
6
12
4
Trang 3/10 Mã đề 1


Câu 45. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.

B. 1202 m.
C. 6510 m.
D. 2400 m.
!
5 − 12x
Câu 46. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vơ nghiệm.
B. 2.
C. 3.
D. 1.
Câu 47. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. .
C.
.
D. a.
2
3
2
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 48. [3-1132d] Cho dãy số (un ) với un =
n2 + 1

1
B. lim un = 0.
A. lim un = .
2
C. lim un = 1.
D. Dãy số un khơng có giới hạn khi n → +∞.
Câu 49. [12214d] Với giá trị nào của m thì phương trình

1
3|x−2|

= m − 2 có nghiệm

C. 0 < m ≤ 1.

D. 2 < m ≤ 3.

Câu 50. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.

C. 3.

D. 4.

Câu 51. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {3; 3}.


D. {4; 3}.

Câu 52. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 11 cạnh.

C. 9 cạnh.

D. 12 cạnh.

A. 2 ≤ m ≤ 3.

B. 0 ≤ m ≤ 1.

Câu 53. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = e + 3.
C. T = 4 + .
D. T = e + .
e
e
Câu 54. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
12 + 22 + · · · + n2
n3
2

B. .
3

C. Khối 12 mặt đều.

D. Khối lập phương.

Câu 55. [3-1133d] Tính lim
A. +∞.

C.

1
.
3

D. 0.

Câu 56. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
2a 3
a3 3
5a3 3
4a3 3

A.
.
B.
.
C.
.
D.
.
3
2
3
3
Câu 57. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 10 năm.
C. 8 năm.
D. 7 năm.
Câu 58. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. [1; 2].

D. (1; 2).
Trang 4/10 Mã đề 1


Câu 59. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √

với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
8
48
24
24
Câu 60. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 61. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.

C. 3.
D. 2.
Câu 62. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
13
9
5
B. −
.
C.
.
D.
.
A. − .
16
100
100
25
Câu 63. Phát biểu nào sau đây là sai?
1
A. lim un = c (Với un = c là hằng số).
B. lim k = 0 với k > 1.
n
1
n
C. lim q = 1 với |q| > 1.
D. lim √ = 0.
n
!2x−1

!2−x
3
3
Câu 64. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [3; +∞).
C. [1; +∞).
D. (+∞; −∞).
Câu 65. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
C. − .
A. −e.
B. − .
2e
e
Câu 66.
Z Các khẳng định nào sau
Z đây là sai?
Z
A.
Z
C.

D. −


f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = F(x) +C ⇒
!0
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = f (x).

1
.
e2

Z

f (u)dx = F(u) +C.

Câu 67. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z

−1 + i 3
−1 − i 3
A. P = 2i.
B. P = 2.
C. P =
.
D. P =
.
2

2
Câu 68. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 2.

C. 0.

D. 1.

Câu 69. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 18 tháng.
C. 16 tháng.
D. 15 tháng.
Trang 5/10 Mã đề 1


1 − n2
Câu 70. [1] Tính lim 2
bằng?
2n + 1
1
1

A. − .
B. .
2
2

C.

1
.
3

Câu 71. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Bốn mặt.
C. Một mặt.

D. 0.

D. Hai mặt.

Câu 72. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
!
1
1
1
Câu 73. [3-1131d] Tính lim +

+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. 2.
B. .
C. .
D. +∞.
2
2
Câu 74. Bát diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.

C. {5; 3}.

D. {4; 3}.

2

Câu 75. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 3 − log2 3.
C. 2 − log2 3.

D. 1 − log3 2.

Câu 76. Tứ diện đều thuộc loại
A. {5; 3}.

B. {3; 4}.

D. {3; 3}.

C. {4; 3}.

d = 30◦ , biết S BC là tam giác đều
Câu 77. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
9
16
13
Câu 78. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối



√ chóp S .ABCD là
a3 3
a3 3
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
24
48
16
48
Câu 79. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ là

√ Thể tích khối chóp S 3.ABC
3
a 3
a 3
a3 3
a3 2

.
B.
.
C.
.
D.
.
A.
12
4
6
12
Câu 80. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±1.
B. m = ±3.
C. m = ± 3.
D. m = ± 2.
mx − 4
Câu 81. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 26.
C. 45.
D. 34.
Câu 82. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=

=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (3; 4; −4).
Câu 83. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. R.

D. (2; +∞).

Câu 84. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 20.

D. 30.

C. 8.

Trang 6/10 Mã đề 1


d = 120◦ .
Câu 85. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC

Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B. 4a.
C. 3a.
D.
.
2
1

Câu 86. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R \ {1}.
C. D = (−∞; 1).

D. D = R.

Câu 87. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (−1; −7).
C. (2; 2).

D. (1; −3).
x−1 y z+1
= =

Câu 88. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1

mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 10x − 7y + 13z + 3 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 89. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −2.
C. −4.

D. 4.

Câu 90. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (−∞; 2).

C. (0; +∞).

D. (0; 2).

Câu 91. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.

C. y0 = 1 + ln x.

D. y0 = 1 − ln x.

0 0 0 0
0

Câu 92.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 3
a 6
a 6
a 6
.
B.
.
C.
.
D.
.
A.
7
2
3
2
Câu 93. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 9.
C. 0.
D. 13.

2n + 1
Câu 94. Tính giới hạn lim
3n + 2
3
1

2
A. .
B. .
C. .
D. 0.
2
2
3
Câu 95. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
! x3 −3mx2 +m
1
Câu 96. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m = 0.
C. m ∈ R.
D. m ∈ (0; +∞).
Câu 97. Tính lim
A. 1.

2n2 − 1
3n6 + n4
B. 0.


Câu 98. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
1 − 2n
A. un =
.
B. un =
.
2
5n − 3n
5n + n2

C.

2
.
3

C. un =

D. 2.
n2 + n + 1
.
(n + 1)2

D. un =

n2 − 3n
.
n2

Trang 7/10 Mã đề 1


Câu 99. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
24

36
Câu 100. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều sai.

C. Chỉ có (I) đúng.

D. Cả hai đều đúng.

d = 60◦ . Đường chéo
Câu 101. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6
3
.
B.

.
C. a 6.
D.
.
A.
3
3
3
Câu 102.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 5.
B. 2.
C. 1.
D. 3.
Câu 103. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
3
3
3
4a 3
2a 3
2a3
4a
.
B.
.
C.
.
D.

.
A.
3
3
3
3
Câu 104. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
.
B.
.
C. a .
D.
.
A.
3
6
2
Câu 105. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.

B. 2, 22 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 20 triệu đồng.
Câu 106. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 107.
Z Mệnh!0đề nào sau đây sai?
A.
f (x)dx = f (x).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Trang 8/10 Mã đề 1


Câu 108.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
5
1
A.
.

B.
.
3
3

!n
4
C.
.
e

!n
5
D. − .
3

1
Câu 109. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2) ∪ (−1; +∞). C. (−∞; −2] ∪ [−1; +∞). D. −2 < m < −1.
2x + 1
Câu 110. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. .
C. −1.
D. 2.

2
Câu 111. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. 3.
D. Vơ nghiệm.
Câu 112. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. Vô nghiệm.
C. 1 nghiệm.

D. 3 nghiệm.

x+3
nghịch biến trên khoảng
Câu 113. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 3.
B. 1.
C. Vô số.
D. 2.
2

Câu 114. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 7.
C. 5.

D. 6.


Câu 115. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Bốn cạnh.

D. Ba cạnh.

Câu 116. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −5.
B. −15.
C. −12.
D. −9.
Câu 117. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 118. [1] Đạo hàm của làm số y = log x là
1
ln 10
1
1
A. y0 = .
B. y0 =
.
C.
.
D. y0 =

.
x
x
10 ln x
x ln 10
1 − 2n
Câu 119. [1] Tính lim
bằng?
3n + 1
2
2
1
A. − .
B. 1.
C. .
D. .
3
3
3
x−1
Câu 120. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ có độ dài bằng

√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB
A. 2 3.
B. 2.
C. 2 2.

D. 6.
Câu 121. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.
D. 4 mặt.
Câu 122. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
4
8
12
Trang 9/10 Mã đề 1



Câu 123. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C. a3 .
D.
.
A.
6
12
24
Câu 124. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?
!
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng (1; +∞).
!3
!
1
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3

Câu 125. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. 3.

C. +∞.

D. 2.

Câu 126. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Không thay đổi.
B. Tăng lên (n − 1) lần. C. Tăng lên n lần.
D. Giảm đi n lần.
Câu 127. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
5
Câu 128. Tính lim
n+3
A. 1.
B. 2.
cos n + sin n
Câu 129. Tính lim
n2 + 1
A. 1.
B. +∞.

C. Khối 12 mặt đều.

D. Khối tứ diện đều.


C. 0.

D. 3.

C. 0.

D. −∞.

Câu 130. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD



3
3
a 3
a3 3
a
3
.
C.
.
D.
.
A. a .
B.
3
3

9
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2. A

3.

B

4. A

5.

B

6.

7.
10.
12.


8.

C
D

C
B

11.

B

D

13.

B

14.

C

15.

B

16.

C


17.

B

18.

C

19.

20.

21. A

B

22.

23.

C

24. A
26.

D
D

25. A

B
C

28.

C

27.
29.

30. A

B

31.

32.

C

34.

33. A
D

36.

C

35.


C

B

37. A
D

39.

38. A
40.

C

41.

42.

C

43. A

B

44.

D

45.


46.

D

47.

D

49.

D

51.

D

48. A
50.

D

52. A

53.

54. A

55.


56.

B

57. A

58.

B

59.

60.
62.

B
C
C

61.

D
B

64.

C

D


63.
C

65.

B
B

66.

B

67.

68.

B

69.
1

C

C


70. A

71.
D


72.

73. A

74. A

77.

D

81.

D

D

83. A

B

84. A

85.

86. A

87. A

88.


D

79. A

B

80.
82.

C

75.

76.
78.

B

89.

B

90. A

D
B

91.


C
C

92.

C

93.

94.

C

95.

B

96.

B

97.

B

98.

B

99.


B

100. A
102.

101.
103. A

B

104.

D

105.

106.

D

107.

108.

B
D

111.


112. A

D
B

113. A
115.

B

116.

C

118.

D

117. A
D

119. A

120. A

121.

122.

C


123.

124.

C

125.

126.

D

128.
130.

B

109. A

110.
114.

C

127.
129.

C
B


2

C
B
D
B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×