Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (65)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.38 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
Câu 2. Tính lim
A. 1.

B. (I) và (III).

2n2 − 1
3n6 + n4
B.

2
.
3

C. Cả ba mệnh đề.


D. (II) và (III).

C. 2.

D. 0.

Câu 3. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.

C. Cả hai đều đúng.

D. Cả hai đều sai.
q
2
Câu 4. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Câu 5. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. Vô nghiệm.


D. 2.

Câu 6. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 3.
B.
.
C.
.
D. a 2.
3
2
Câu 7. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều rộng
bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 120 cm2 .
D. 160 cm2 .
Câu 8. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; −8).
C. A(4; 8).
D. A(−4; −8)(.

Câu 9. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B. 27.
C.
.
D. 12.
2
Câu 10. Biểu thức nào sau đây khơng có nghĩa


−3
A. (−1)−1 .
B. 0−1 .
C.
−1.
D. (− 2)0 .
Trang 1/10 Mã đề 1


4

Câu 11. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
2
5
5
A. a 3 .
B. a 8 .
C. a 3 .


√3

a2 bằng
7

D. a 3 .

Câu 12. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 13. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 2.
C. 3.
D. 1.
Câu 14. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 5
a3
a3 15
.
B.
.
C.

.
D.
.
A.
5
25
25
3
Câu 15. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
B. f (x) liên tục trên K.
C. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.


Câu 16. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6√− x

A. 3.
B. 2 3.
C. 3 2.
D. 2 + 3.
Câu 17. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 10.

C. 8.

D. 6.

Câu 18. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình

lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
1
bằng
Câu 19. [1] Giá trị của biểu thức log √3
10
A. −3.

B. 3.

Câu 20. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C.

1
.
3

C. Khối bát diện đều.

1
D. − .
3
D. Khối 20 mặt đều.


Câu 21. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 7, 2.
C. 0, 8.
D. −7, 2.
x−1
Câu 22. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB
√ có độ dài bằng

A. 2.
B. 2 3.
C. 2 2.
D. 6.
Câu 23.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Trang 2/10 Mã đề 1



Câu 24.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

f (x)dx = F(x) +C ⇒
!0
f (x)dx = f (x).

f (u)dx = F(u) +C. B.

Z
Z

D.

k f (x)dx = k

Z

f (x)dx, k là hằng số.
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.

Câu 25. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là



A. 8, 16, 32.
B. 6, 12, 24.
C. 2, 4, 8.
D. 2 3, 4 3, 38.
Câu 26. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.

x2 + 3x + 5
Câu 27. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. − .
C. 0.
D. 1.
A. .
4
4
Câu 28. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.


B. 3.

Câu 29. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 10.

C. 1.

D. 2.

C. 8.

D. 4.

Câu 30. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x + (m √+ 1)2 trên [0; 1] bằng 8
B. m = ±3.
C. m = ± 2.
D. m = ±1.
A. m = ± 3.
3

2

x

Câu 31. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là


√ với đáy và S C = a 3.3 √
3
a 3
2a3 6
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
2
4
9
12
Câu 32. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp đôi.
C. Tăng gấp 4 lần.
D. Tăng gấp 6 lần.
Câu 33. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối

√ chóp S .ABCD là
3

3

a 6
a 15
a3 5
3
A.
D.
.
B.
.
C. a 6.
.
3
3
3
Câu 34. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 8 m.
D. 24 m.
Câu 35. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 36. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 8.

C. 30.


D. 20.
Trang 3/10 Mã đề 1


Câu 37. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
6
12
12
4
d = 120◦ .
Câu 38. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B. 4a.
C.

.
D. 2a.
2
Câu 39. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 91cm3 .
D. 64cm3 .
7n2 − 2n3 + 1
Câu 40. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. 0.
C. 1.
D. .
3
3
Câu 41. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 3.
B. 1.
C. .
D. .
2
2



Câu 42. [12215d] Tìm m để phương trình 4 x+
3
9
B. 0 ≤ m ≤ .
A. 0 ≤ m ≤ .
4
4

1−x2



− 3m + 4 = 0 có nghiệm
3
C. 0 < m ≤ .
D. m ≥ 0.
4

− 4.2 x+

1−x2

Câu 43. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.

B. 25 m.
C. 387 m.
D. 1587 m.
d = 60◦ . Đường chéo
Câu 44. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
a3 6
2a3 6
3
.
B. a 6.
.
D.
.
A.
C.
3
3
3
Câu 45. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là

A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 46. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3
3
A. 10a .
B. 20a .
C. 40a .
D.
.
3
Câu 47. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 10 mặt.
C. 4 mặt.

D. 6 mặt.

Câu 48. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = −18.
C. y(−2) = 2.
D. y(−2) = 6.

Câu 49. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1637
23
1728
A.
.
B.
.
C.
.
D.
.
4913
4913
68
4913
Trang 4/10 Mã đề 1


Câu 50. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
D.

A.
.
B.
.
C. a 6.
.
3
6
2
Câu 51. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 + i 3
−1 − i 3
A. P = 2i.
B. P =
.
C. P = 2.
D. P =
.
2
2
q
2
Câu 52. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 2].
C. m ∈ [0; 1].

D. m ∈ [0; 4].
1
Câu 53. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 ≤ m ≤ −1.
C. (−∞; −2] ∪ [−1; +∞). D. −2 < m < −1.
Câu 54. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.

A.
24
36
6
12
Câu 55.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 10.
B. 2.
C. 1.
D. 2.
Câu 56. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. [6, 5; +∞).
C. (−∞; 6, 5).

D. (4; 6, 5].

Câu 57. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 5.
D. 0, 2.
log2 240 log2 15

+ log2 1 bằng
Câu 58. [1-c] Giá trị biểu thức
log3,75 2 log60 2

A. −8.
B. 1.
C. 4.
D. 3.
Câu 59. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 8π.
C. 32π.
D. V = 4π.
Câu 60. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 12.
D. ln 14.
Câu 61. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 11 cạnh.

C. 12 cạnh.

Câu 62. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 2.
C. 3.

D. 10 cạnh.
D. 0.

Câu 63. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng

2
A. 3.
B. 2e + 1.
C. .
D. 2e.
e
Câu 64. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vuông góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
Trang 5/10 Mã đề 1


A. ~u = (3; 4; −4).

B. ~u = (1; 0; 2).

C. ~u = (2; 2; −1).

D. ~u = (2; 1; 6).
8
Câu 65. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x

A. 81.
B. 64.
C. 96.
D. 82.
Câu 66. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 30.

C. 8.

D. 20.

Câu 67. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 12.

C. 20.

D. 10.

1
Câu 68. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.
B. −3 ≤ m ≤ 4.
C. m = −3, m = 4.
D. m = 4.
Câu 69. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

A. Thập nhị diện đều. B. Nhị thập diện đều. C. Bát diện đều.
D. Tứ diện đều.

Câu 70. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. 62.
D. Vơ số.
Câu 71. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Ba mặt.
C. Bốn mặt.

D. Một mặt.

Câu 72. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Câu 73. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + 2 sin 2x.
C. 1 + 2 sin 2x.
D.
log 2x
Câu 74. [3-1229d] Đạo hàm của hàm số y =


x2
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
0
0
.
C.
y
=
.
D.
A. y0 =
.
B.
y
=
x3
x3 ln 10
2x3 ln 10
cos n + sin n
Câu 75. Tính lim
n2 + 1
A. 0.
B. +∞.
C. −∞.
D.
1 3
Câu 76. Tìm tất cả các khoảng đồng biến của hàm số y = x − 2x2 + 3x − 1.
3

A. (1; +∞).
B. (1; 3).
C. (−∞; 1) và (3; +∞). D.

−1 + sin x cos x.

y0 =

1
.
2x3 ln 10

1.

(−∞; 3).

Câu 77. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. e2016 .
C. 1.
D. 0.
Câu 78. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng

3


2 3
A.
.
B. 3.
C. 1.
D. 2.
3
x
Câu 79. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
1
3
3
A. .
B.
.
C. .
D. 1.
2
2
2
Trang 6/10 Mã đề 1


[ = 60◦ , S O
Câu 80. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ O đến (S

√ BC) bằng


2a 57
a 57
a 57
B.
A. a 57.
.
C.
.
D.
.
19
19
17
Câu 81. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e2 − 2; m = e−2 + 2.
−2
C. M = e − 2; m = 1.
D. M = e−2 + 2; m = 1.
Câu 82. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. .
B. 1.
C.
.
2

2
Câu 83. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
3

D. 2.

!
1
B. Hàm số nghịch biến trên khoảng ; 1 .
3!
1
D. Hàm số đồng biến trên khoảng ; 1 .
3

Câu 84. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

a3
a3
2a3 3
4a3 3
A.
.
B.
.
C.

.
D.
.
3
6
3
3
Câu 85. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Chỉ có (II) đúng.

C. Cả hai câu trên sai.

D. Cả hai câu trên đúng.

Câu 86. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là


3
3
a 6
a 3
a3 2
a3 3
.
B.
.
C.
.
D.
.
A.
48
48
16
24
Câu 87. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −7.
B. −4.
C. −2.
D.
.
27
Câu 88. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết

a 5. Thể tích khối chóp S .ABCD là
√ S H ⊥ (ABCD), S A =

3
3
2a 3
2a
4a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 89. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −12.
C. −9.
D. −15.
Câu 90. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.

C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 91. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 9.
C. 6.
D. .
2
2
Trang 7/10 Mã đề 1



Câu 92. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
3
πa3 6
πa3 3
πa3 3
πa 3
.
B. V =
.

C. V =
.
D. V =
.
A. V =
2
6
6
3
Câu 93. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≤ 0.
C. − < m < 0.
D. m ≥ 0.
A. m > − .
4
4
Câu 94. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 30.

C. 8.

D. 12.

Câu 95. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ± 2.
B. m = ±1.

C. m = ±3.
D. m = ± 3.
Câu 96. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó không rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 12 năm.
D. 14 năm.
!4x
!2−x
3
2


Câu 97. Tập các số x thỏa mãn
"
!
" 3 ! 2
#
#
2
2
2
2
; +∞ .
A. − ; +∞ .
B.
C. −∞; .

D. −∞; .
3
5
5
3
Câu 98. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 99. Tính lim
A. 1.

2n − 3
bằng
+ 3n + 1
B. −∞.

2n2

D. +∞.

C. 0.

Câu 100. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là 1.
Câu 101. Hàm số nào sau đây khơng có cực trị

1
x−2
A. y = x + .
B. y =
.
x
2x + 1

C. y = x3 − 3x.

D. y = x4 − 2x + 1.

d = 30◦ , biết S BC là tam giác đều
Câu 102. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.

26
13
16
9
Câu 103. [1] Đạo hàm của hàm số y = 2 x là

.

D. y0 =

1
.
ln 2

Câu 104. [2] Cho hàm số y = ln(2x + 1). Tìm m để y (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4 − 2e

D. m =


1 + 2e
.
4e + 2

A. y0 = 2 x . ln 2.

B. y0 = 2 x . ln x.

C. y0 =

1
2 x . ln

x

0

Câu 105. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 0.

B. 7.

C. 5.

D. 9.
Trang 8/10 Mã đề 1



ln x p 2
1
Câu 106. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
1
8
A. .
B. .
C. .
D. .
3
9
9
3
Câu 107. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 7.
C. 3.
D. 2.
Câu 108. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.
!
x+1

Câu 109. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
.
B.
.
C.
.
D. 2017.
A.
2017
2018
2018
Câu 110. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 1.

B. 0.

C. +∞.

D. 2.

Câu 111. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. −3.

C. 0.
D. 3.
x2 − 3x + 3
đạt cực đại tại
Câu 112. Hàm số y =
x−2
A. x = 3.
B. x = 2.
C. x = 1.
D. x = 0.
Câu 113. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B. 7.
C.
.
D. 5.
2
2
Câu 114. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. 2e4 .
C. −e2 .
D. −2e2 .
Câu 115. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.

C. 9 năm.
D. 10 năm.
Câu 116. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 117.
√cạnh bằng a
√ Thể tích của tứ diện đều
3
3
a 2
a 2
.
B.
.
A.
6
12


a3 2
C.
.
2


a3 2

D.
.
4

Câu 118. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.
C. 24.
D. 3, 55.
Câu 119. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.
C. 0, 6%.
D. 0, 8%.
Trang 9/10 Mã đề 1


Câu 120. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

α α
α
αβ
α β
D. aα+β = aα .aβ .
A. a b = (ab) .

B. a = (a ) .
C. β = a β .
a
3
Câu 121. Giá trị cực đại của hàm số y = x − 3x + 4 là
A. 6.
B. −1.
C. 1.
D. 2.
Câu 122. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. −e.
C. − .
D. − 2 .
e
2e
e
Câu 123. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là

3
3
3
3
8a 3

8a 3
a 3
4a 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
Câu 124. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. −3 ≤ m ≤ 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 125. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (2; +∞).
C. (0; 2).

D. (−∞; 1).

Câu 126. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √

tích khối chóp S .ABC là √

3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
48
24
8
24
Câu 127. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 + n + 1
n2 − 3n
n2 − 2
.
B.
u
=
.

C.
u
=
.
D.
u
=
.
A. un =
n
n
n
5n − 3n2
5n + n2
(n + 1)2
n2
Câu 128. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 129. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. .
B. 5.
C. 5.
D. 25.
5
Câu 130. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu

không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.423.000.
D. 102.016.000.


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3. A

4.

C

5. A

6.


C

7. A

8.

C

9. A

10.

11. A

D

B

12. A

13.

B

14.

15.

B


16.

C
C

17.

D

18.

19.

D

20. A

21.

D

22.

23. A

B

B


24. A

25.

B

26.

B

27.

B

28.

B

29.

C

31.

30.
D

32. A

33. A


34. A

35. A

36.

37.

C

B

D

38.

C

39.

D

40. A

41.

D

42.


B

43. A

44.

B

45. A

46.

B

48.

B

50.

B

47.
49.

D
B

51.

53.

52. A

C
B

55.

C

57. A

54.

D

56.

D

58. A

60.

D

61.

62.


D

63. A

64.

B

65. A

66.

B

67.

68.

69. A

C
1

D

B


70.


C

71.

72.

C

73.

74.

C

78.

D

80.

77.

D

79.

D

81.


C

82.

D

83.

84.

D

85.

86.

B

88.

89.

C
D
B

95.
97. A


98. A

99.

100. A

101.
B

C
B
D
B
C
B

103. A

104. A
B

108.
110.

D

93. A

96. A


106.

B

91.

92.

102.

C

87.

90. A
94.

B

75. A

B

76.

C

D

105.


D

107.

D

109.

B

111.

112.

C

113. A

114.

C

115.

116.

C

117.


118. A

C
B
C
B

119. A

120.

C

121. A

122.

C

123.

C

125.

C

124.
126.


B
D

127.
129.

128. A
130. A

2

B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×