Tài liệu Pdf miễn phí LATEX
ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu 1. Cho hìnhqchóp đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng b. Thể tích của khối chóp là:
√
√
a2 b2 − 3a2
a2 3b2 − a2
A. VS .ABC =
.
B. VS .ABC =
.
√ 12
√ 2 12
3a b
3ab2
.
D. VS .ABC =
.
C. VS .ABC =
12
12
3
Câu 2. Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) và đáy
2
là đường trịn nằm hồn tồn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn
nhất. √
√
√
4 3π
2π
A.
.
B. √ .
C. 4 3π.
D. 2 3π.
3
3
1
là đúng?
x
B. Hàm số nghịch biến trên R.
D. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).
Câu 3. Kết luận nào sau đây về tính đơn điệu của hàm số y =
A. Hàm số nghịch biến trên (0; +∞).
C. Hàm số đồng biến trên R.
R1 √3
Câu 4. Tính I =
7x + 1dx
0
60
20
A. I = .
B. I = .
28
7
Câu 5. Kết quả nào đúng?
R
sin3 x
A. sin2 x cos x = −
+ C.
3
R
C. sin2 x cos x = cos2 x. sin x + C.
C. I =
45
.
28
D. I =
21
.
8
sin3 x
+ C.
3
R
D. sin2 x cos x = −cos2 x. sin x + C.
B.
R
sin2 x cos x =
Câu 6. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − 5 = 0. Bán kính R
của (S) bằng
√
√ bao nhiêu?
A. R = 29.
B. R = 9.
C. R = 21.
D. R = 3.
Câu 7. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
A. loga (x − 2)2 = 2loga (x − 2).
B. loga x2 = 2loga x.
1
C. aloga x = x.
D. loga2 x = loga x.
2
√
Câu 8. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hoành. Tìm
thể tích V của khối trịn xoay tạo thành?
π
10π
A. V = 1.
B. V = .
C. V = π.
D. V =
.
3
3
Câu 9. Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng
biến thiên như hình bên. Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân
biệt.
S
S
7
7
7
A. [ ; 2] [22; +∞).
B. ( ; +∞)
C. [22; +∞).
D. ( ; 2] [22; +∞) .
4
4
4
.
Câu 10. Cho a, b là hai số thực dương, khác 1. Đặt loga b = m, tính theo m giá trị của P = loga2 b −
log √b a3 .
m2 − 12
m2 − 3
4m2 − 3
m2 − 12
A.
.
B.
.
C.
.
D.
.
m
2m
2m
2m
Trang 1/5 Mã đề 001
Câu 11. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = 1 + 2ty = 2 + (m − 1)tz = 3 − t.
Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
A. m , −1.
B. m , 0.
C. m , 1.
D. m = 1.
Câu 12. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 và đường thẳng y = x.
2
1
1
B. .
C. 1.
D. − .
A. .
6
3
6
R
Câu 13. Tính nguyên hàm cos 3xdx.
1
1
A. − sin 3x + C.
B. −3 sin 3x + C.
C. sin 3x + C.
D. 3 sin 3x + C.
3
3
Câu 14. Cho tứ diện đều ABCD có cạnh bằng a. Tính diện tích xung quanh của hình trụ có đáy là đường
trịn ngoại
tam giác BCD và√có chiều cao bằng chiều√cao của tứ diện.
√ tiếp
2
√
π 3.a2
π 2.a2
2π 2.a
.
B.
.
C.
.
D. π 3.a2 .
A.
3
2
3
2x + 2017
Câu 15. Cho hàm số y =
(1). Mệnh đề nào dưới đây là đúng?
x
+ 1
A. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x = −1, x = 1..
B. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = −1..
C. Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y = 2 và khơng có tiệm cận đứng.
D. Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và khơng có tiệm cận
đứng.
√ x
Câu 16. Tìm nghiệm của phương trình 2 x = ( 3) .
A. x = 2.
B. x = 0.
C. x = 1.
D. x = −1.
m
R
dx
Câu 17. Cho số thực dươngm. Tính I =
theo m?
2
0 x + 3x + 2
2m + 2
m+2
m+1
m+2
A. I = ln(
).
B. I = ln(
).
C. I = ln(
).
D. I = ln(
).
m+2
m+1
m+2
2m + 2
Câu R18. Công thức nào sai?
R
A. R cos x = sin x + C.
B. R e x = e x + C.
C. sin x = − cos x + C.
D. a x = a x . ln a + C.
Câu 19. Cho hình chóp đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng b. Thể tích của khối chóp
là:
q
√
√
2
a b2 − 3a2
a2 3b2 − a2
A. VS .ABC =
.
B. VS .ABC =
.
12
√ 12
√
3ab2
3a2 b
C. VS .ABC =
.
D. VS .ABC =
.
12
12
Câu 20. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
A. m ∈ (−1; 2).
B. −1 < m < .
C. m ∈ (0; 2).
D. m ≥ 0.
2
Câu 21. Kết quả nào đúng?
R
R
sin3 x
A. sin2 x cos x = −
+ C.
B. sin2 x cos x = −cos2 x. sin x + C.
3
3
R
R
sin
x
C. sin2 x cos x =
+ C.
D. sin2 x cos x = cos2 x. sin x + C.
3
Câu 22. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
4
3
A. 4πR3 .
B. πR3 .
C. πR3 .
D. πR3 .
4
3
Trang 2/5 Mã đề 001
Câu 23. Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 60a3 .
B. 20a3 .
C. 30a3 .
D. 100a3 .
Câu 24. Cho hai số thực a, bthỏa
mãn a√> b > 0. Kết luận nào
√
√
√5 sau đây là sai? √2
√5
a
b
− 3
− 3
A. e > e .
B. a
C. a < b.
D. a > b 2 .
Câu 25. Hàm số nào sau đây khơng có cực trị?
A. y = x3 − 6x2 + 12x − 7.
C. y = x4 + 3x2 + 2.
B. y = cos x.
D. y = x2 .
Câu 26. Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2). Tìm tọa độ D để ABCD là hình bình
hành.
A. (−1; 1; 1).
B. (1; −1; 1).
C. (1; −2; −3).
D. (1; 1; 3).
Câu 27. Họ nguyên hàm của hàm số y = (x − 1)e x là:
A. (x − 2)e x + C.
B. (x − 1)e x + C.
C. xe x + C.
D. xe x−1 + C.
2x − 3
Câu 28. Với giá trị nào của tham số m thì hàm số y =
đạt giá trị lớn nhất trên đoạn [1; 3] bằng
x + m2
1
:
4
√
A. m = ±3.
B. m = ± 3.
C. m = ±2.
D. m = ±1.
√
Câu 29. Cho hình chóp S .ABC có S A⊥(ABC), S A = a 3. Tam giác ABC vuông cân tại B, AC = 2a.
Thể tích√khối chóp S .ABC là
√
√
3
3
√
a3 3
2a
3
a
3
A.
.
B. a3 3 .
C.
.
D.
.
6
3
3
1 3 2
x −2x +3x+1
Câu 30. Cho hàm số f (x) = e 3
. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 1) và (3; +∞).
B. Hàm số đồng biến trên khoảng (−∞; 1) và (3; +∞).
C. Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3; +∞).
D. Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3; +∞).
Câu 31. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. −6.
B. 0.
C. 1.
D. .
6
2
x + 2x
Câu 32. Khoảng cách giữa hai điểm cực trị của đồ thị hàm số y =
là:
x−1
√
√
√
√
A. 2 5.
B. 2 15.
C. −2 3.
D. 2 3.
Câu 33. Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1). Mặt cầu đường kính AB có phương trình
A. (x + 1)2 + (y − 1)2 + (z − 2)2 = 6.
B. (x + 1)2 + (y − 1)2 + (z − 2)2 = 24.
√
C. (x + 1)2 + (y − 1)2 + (z − 2)2 = 6.
D. (x − 1)2 + (y + 1)2 + (z + 2)2 = 6.
Câu 34. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh
√ a. Hai mặt phẳng (S AB), (S AC) cùng
2
vng góc
là a 3. Tính thể tích khối
√ với mặt phẳng (ABC),
√diện tích tam giác S BC3 √
√ chóp S .ABC.
a3 15
a3 15
a 15
a3 5
A.
.
B.
.
C.
.
D.
.
4
16
8
3
Câu 35. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 1.
B. m = 3.
C. m = 2.
D. m = 4.
Câu 36. Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0. Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2 +MB2 +2MC 2
nhỏ nhất. Tính tổng a + b + c.
A. 3.
B. 4.
C. 1.
D. 2.
Trang 3/5 Mã đề 001
Câu 37. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x trên đoạn [−1; 2] lần lượt là M, m.
Tính M + m.
A. 4.
B. 5.
C. 6.
D. 3.
Câu 38. Trong không gian với hệ trục tọa độ Oxyz, gọi (P)
√ là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
3 2
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng
. Giả sử phương trình mặt phẳng (P) có dạng
2
ax + by + cz + 2 = 0. Tính giá trị abc.
A. −4.
B. 4.
C. 2.
D. −2.
Câu 39. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 3a; cạnh S A vng góc với mặt
phẳng (ABCD), S A = 2a. Tính thể tích khối chóp S .ABCD.
A. 4a3 .
B. 12a3 .
C. 3a3 .
D. 6a3 .
Câu 40. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5 .
C. y′ = (1 − sin 3x)5 x+cos3x ln 5 .
B. y′ = 5 x+cos3x ln 5 .
D. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
Câu 41. Hình phẳng giới hạn bởi đồ thị hàm y = x2 +1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
1
1
1
1
A. .
B. .
C. .
D. .
12
6
4
3
Câu 42. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
B. (x − 1)2 + (y − 2)2 + (z − 4)2 = 3.
2
2
2
C. (x − 1) + (y − 2) + (z − 4) = 1.
D. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
√
2x − x2 + 3
Câu 43. Đồ thị hàm số y =
có số đường tiệm cận đứng là:
x2 − 1
A. 2.
B. 0.
C. 1.
D. 3.
Câu 44. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 2.
B. m = 1.
C. m = 4.
D. m = 3.
Câu 45. Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′ =√2a. Gọi α là số đo góc giữa
và DB′ . Tính giá trị cos α.
√ hai đường thẳng AC √
3
5
3
1
A.
.
B.
.
C.
.
D. .
2
5
4
2
R
ax + b 2x
Câu 46. Biết a, b ∈ Z sao cho (x + 1)e2x dx = (
)e + C. Khi đó giá trị a + b là:
4
A. 3.
B. 2.
C. 1.
D. 4.
Câu 47. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
4 10 16
7 10 31
2 7 21
5 11 17
A. M( ; ; ).
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
3 3 3
3 3 6
3 3 3
3 3 3
0
d
Câu 48. Cho hình chóp S .ABC có đáy ABC
√ là tam giác vuông tại A; BC = 2a; ABC = 60 . Gọi Mlà
trung điểm cạnh BC, S A = S C √
= S M = a 5. Tính khoảng cách từ S đến mặt phẳng
√ (ABC).
A. 2a.
B. a 2.
C. a.
D. a 3.
Câu 49. Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau. Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
A. 36080251 đồng.
B. 36080255 đồng.
C. 36080253 đồng.
D. 36080254 đồng.
x2
Câu 50. Tính tích tất cả các nghiệm của phương trình (log2 (4x))2 + log2 ( ) = 8
8
1
1
1
1
A. .
B.
.
C.
.
D. .
6
32
128
64
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001