Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn tập toán thptqg 1 (553)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.64 KB, 13 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

d = 300 .
Câu 1. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


a3 3
3a3 3
3
3
A. V = 6a .
B. V = 3a 3.
C. V =
.
D. V =
.
2
2
Câu 2. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.


D. Một tứ diện đều và bốn hình chóp tam giác đều.
d = 30◦ , biết S BC là tam giác đều
Câu 3. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
26
16
13
9
Câu 4. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. R.
D. (2; +∞).
!
!

!
1
2
2016
4x
. Tính tổng T = f
Câu 5. [3] Cho hàm số f (x) = x
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 1008.
C. T =
.
D. T = 2017.
2017
Câu 6.
Z Trong các khẳng định sau, khẳng định nào sai? Z
xα+1
1
A.
dx = ln |x| + C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
α+1

Z x
Z
C.

0dx = C, C là hằng số.

D.

dx = x + C, C là hằng số.

1

Câu 7. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = (1; +∞).
C. D = R.
x2 − 9
Câu 8. Tính lim
x→3 x − 3
A. 3.

B. 6.

D. D = R \ {1}.
D. +∞.

C. −3.

Câu 9. [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số
√ f (x) = 2

A. 2 và 3.
B. 2 và 3.
C. 2 2 và 3.

sin2 x

Câu 10. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 3.

+2

cos2 x

lần lượt√là
D. 2 và 2 2.

1
3|x−1|

C. 1.

= 3m − 2 có nghiệm duy

D. 4.

Câu 11. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.

B. Hai mặt.
C. Bốn mặt.

D. Ba mặt.

Câu 12. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

D. Khối 20 mặt đều.

C. Khối bát diện đều.

Câu 13. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.

D. {3; 5}.
Trang 1/10 Mã đề 1


Câu 14. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 15. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√


a3 5
a3 5
a3 3
a3 5
.
B.
.
C.
.
D.
.
A.
12
4
6
12
Câu 16. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√mặt phẳng (AIC) có diện
√tích là
√ hình chóp S .ABCD với
2
2
2
2
11a
a 7
a 2
a 5

A.
.
B.
.
C.
.
D.
.
32
8
4
16
Câu 17. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 14 năm.
C. 10 năm.
D. 12 năm.
Câu 18. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 27 lần.
Câu 19. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.

D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 20. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 5.
Câu 21. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 3n
.
B. un =
.
A. un =
2
n
5n + n2

C. 2.
C. un =

D. 4.
n2 − 2
.
5n − 3n2

Câu 22. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m , 0.
C. m < 0.

D. un =


n2 + n + 1
.
(n + 1)2

D. m > 0.

Câu 23. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.

24
36
12
6
Câu 24. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 1.
C. 6.
D. −1.
q
Câu 25. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Trang 2/10 Mã đề 1


Câu 26. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì

f (x)dx =
g0 (x)dx.
Z
Z
0
C. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
4

Câu 27. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
5
5
7
A. a 3 .
B. a 8 .
C. a 3 .
!
1
1
1
Câu 28. Tính lim
+
+ ··· +
1.2 2.3

n(n + 1)
3
A. 0.
B. .
C. 1.
2
Câu 29. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 12.
C. 8.

√3

a2 bằng
2

D. a 3 .

D. 2.
D. 30.

Câu 30. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
5a
2a
8a
.
B. .

C.
.
D.
.
A.
9
9
9
9
Câu 31. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.
C. 10.
D. 30.
1
Câu 32. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Câu 33. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
4a 3

5a3 3
2a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2
!2x−1
!2−x
3
3
Câu 34. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. [3; +∞).
C. [1; +∞).
D. (−∞; 1].
Câu 35. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng

A. 8π.
B. 32π.
C. 16π.
D. V = 4π.
Câu 36. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. m ≥ 0.
C. m ≤ 0.
D. − < m < 0.
4
4
2n − 3
Câu 37. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. 1.
C. 0.
D. −∞.
Câu 38. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. −2.

D. 2.
Trang 3/10 Mã đề 1



Câu 39. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 4.

C. 24.

Câu 40. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim √ = 0.
n

B. lim qn = 1 với |q| > 1.
1
D. lim k = 0 với k > 1.
n

D. 2.

Câu 41. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (I) sai.

C. Câu (III) sai.


D. Khơng có câu nào
sai.

Câu 42. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a
a 2
2a
A. .
B. .
C.
.
D.
.
3
4
3
3
Câu 44. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng

người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 24.
C. 23.
D. 21.
Câu 43. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 45. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 5.

C. 4.

Câu 46. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 7 mặt.
2n + 1
Câu 47. Tìm giới hạn lim
n+1
A. 3.
B. 2.
C. 0.

D. 6.
D. 8 mặt.

D. 1.


Câu 48. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 49. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4 − 2e
4 − 2e
4e + 2
Câu 50. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là


3
3


a3 15
a
6
a
5
A.
.
B. a3 6.
C.
.
D.
.
3
3
3
a
1
Câu 51. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 4.
C. 2.
D. 7.
Trang 4/10 Mã đề 1


Câu 52. Cho I =

Z


3

x


dx =

0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 4.

a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d
d
C. P = 28.

D. P = 16.

Câu 53. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 7 năm.
D. 9 năm.
Câu 54. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh

! đề nào dưới đây đúng?
!
1
1
B. Hàm số đồng biến trên khoảng ; 1 .
A. Hàm số nghịch biến trên khoảng −∞; .
3
!3
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 55. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 3.
C. 1.
D. Vô số.
Câu 56.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
A.
Z
Z
Z

Z
Z
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 57. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 6.
C. .
D. 9.
2
2
Câu 58. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 16 tháng.
D. 18 tháng.
Câu 59. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > 1.

C. m ≥ 0.

D. m > −1.

0
Câu 60. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
√ C đến đường thẳng BB bằng 2, khoảng
0
0
cách từ A đến các đường thẳng BB và CC lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A.
.
B. 1.
C. 3.
D. 2.
3
Câu 61. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 2, 4, 8.
B. 2 3, 4 3, 38.

C. 8, 16, 32.
D. 6, 12, 24.
x
9
Câu 62. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.
B. 1.
C. −1.
D. .
2
Câu 63. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó

Trang 5/10 Mã đề 1


A.
B.
C.
D.

F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Cả ba câu trên đều sai.
F(x) = G(x) trên khoảng (a; b).
G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.

Câu 64. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

A. 10 mặt.
B. 6 mặt.
C. 4 mặt.

D. 8 mặt.

Câu 65. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
3
1
B. 1.
C.
.
D. .
A. .
2
2
2
Câu 66. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
x

Câu 67. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

Câu 68. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+1
c+3
c+2
c+2
2n2 − 1
Câu 69. Tính lim 6
3n + n4
2
A. 0.

B. .
C. 2.
D. 1.
3
Câu 70. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 12.
B. 27.
C. 18.
D.
2
Câu 71. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.
d = 60◦ . Đường chéo
Câu 72. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6

a3 6
4a3 6
3
.
B.
.
C. a 6.
D.
.
A.
3
3
3
2x + 1
Câu 73. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. .
C. 2.
D. −1.
2
Câu 74.√Thể tích của tứ diện đều √
cạnh bằng a


3
3
a 2
a 2

a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
6
2
12
4
Câu 75. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Trang 6/10 Mã đề 1


D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 76. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = −18.
Câu 77. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.

B. M = e−2 + 2; m = 1.
C. M = e−2 − 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 78. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 20.

C. 12.

D. 8.

Câu 79. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S 3.ABCD là
3
a 3
a
a 3
.
B.
.
C.
.
D. a3 .
A.
9
3
3
Câu 80. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,

lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 210 triệu.
C. 212 triệu.
D. 220 triệu.
Câu 81. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (1; 3; 2).
D. (2; 4; 6).




Câu 82. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
C. m ≥ 0.
D. 0 < m ≤ .
4
4
4
3

2
Câu 83. [2D1-3] Tìm giá trị của tham số m để hàm số y = x − mx + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −3 ≤ m ≤ 3.
C. m ≤ 3.
D. −2 ≤ m ≤ 2.
2

2

Câu 84. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. [1; 2].

D. (1; 2).

Câu 85. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 84cm3 .
C. 64cm3 .
D. 48cm3 .
1
Câu 86. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. −2.
C. 1.
D. 2.

Câu 87. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là


3
a3 3
a
3
a3
A.
.
B. a3 .
C.
.
D.
.
2
6
3
Câu 88. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B.

.
C. 68.
D. 34.
17
Câu 89. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

A. −3 − 4 2.
B. 3 − 4 2.
C. −3 + 4 2.


D. 3 + 4 2.
Trang 7/10 Mã đề 1


x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. [−3; +∞).
C. (−3; +∞).

D. (−∞; −3).
Câu 90. [4-1212d] Cho hai hàm số y =

Câu 91. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
D.
.
A. 5.
B. 7.
C. .
2
2
Câu 92. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
A.
.
B. a 3.
.
D.
.
C.
2
3

2
1 − 2n
Câu 93. [1] Tính lim
bằng?
3n + 1
2
2
1
A. 1.
B. − .
C. .
D. .
3
3
3
2n + 1
Câu 94. Tính giới hạn lim
3n + 2
1
2
3
B. .
C. .
D. 0.
A. .
2
2
3
!
x+1

Câu 95. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035
A.
.
B.
.
C.
.
D. 2017.
2018
2017
2018
!4x
!2−x
2
3
Câu 96. Tập các số x thỏa mãn


" 3 ! 2
"
!
#
#
2
2

2
2
A. −∞; .
B.
; +∞ .
C. −∞; .
D. − ; +∞ .
3
5
5
3
Câu 97. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 98.! Dãy số nào sau đây có giới
!n hạn là 0?
n
4
1
A.
.
B.
.
e
3

!n
5

C.
.
3

!n
5
D. − .
3

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.

Câu 99. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.

Câu 100. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 2.
D. 3.
!
1
1
1

Câu 101. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.
B. .
C. .
D. 2.
2
2
Câu 102. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).
C. (−∞; 0) và (2; +∞). D. (0; 2).
Trang 8/10 Mã đề 1


Câu 103. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 104. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. n3 lần.
D. 2n3 lần.

Câu 105. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 1.

C. 3.

D. 0.

3

Câu 106. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e5 .
C. e.
D. e2 .
Câu 107. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ là

√ Thể tích khối chóp S 3.ABC
3
a 3
a3 2
a3 3
a 3

.
B.
.
C.
.
D.
.
A.
12
6
12
4
Câu 108. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 6
a3 3
a3 6
a3 6
.
B.
.
C.
.
D.
.
A.
48

24
24
8
Câu 109. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
Câu 110. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
18
9
6
x−3 x−2 x−1
x
Câu 111. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham

x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (−∞; 2).
D. (2; +∞).
Câu 112. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
B. lim qn = 0 (|q| > 1).
n
1
C. lim = 0.
D. lim un = c (un = c là hằng số).
n
Câu 113. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √



2a3 3
a3 3
a3 3
3
A.
.

B. a 3.
C.
.
D.
.
3
6
3
mx − 4
Câu 114. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 26.
C. 67.
D. 45.
Trang 9/10 Mã đề 1


Câu 115. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Ba mặt.
C. Hai mặt.

D. Bốn mặt.

Câu 116. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. (−∞; −3].

C. [−3; 1].
D. [1; +∞).
Câu 117. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B. a 6.
C. 2a 6.
D.
.
A. a 3.
2

Câu 118. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √

3

a3 3
a
a3
3
.
B.
.
C. a3 3.
D.

.
A.
4
3
12

Câu 119. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. −3.
B. .
C. − .
D. 3.
3
3
Câu 120. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 121. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.


B. Chỉ có (I) đúng.

C. Cả hai câu trên đúng. D. Cả hai câu trên sai.

Câu 122. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. 4 − 2 ln 2.
C. e.
D. −2 + 2 ln 2.
Câu 123. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
23
9
5
B.
.
C. −
.
D.
.
A. − .
16
100
100
25
Câu 124. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −3.


D. m = −1.

Câu 125. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp

√ phẳng vng góc với 3(ABCD).
√ S .ABCD là
3
3

a
3
a
2
a
3
A. a3 3.
B.
.
C.
.
D.
.
2
2
4
Câu 126. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.

B. −1 + 2 sin 2x.
C. 1 − sin 2x.

D. −1 + sin x cos x.

3
2
x
Câu 127. [2]
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8
√ Tìm m để giá trị lớn nhất
A. m = ± 3.
B. m = ± 2.
C. m = ±1.
D. m = ±3.

Câu 128. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 12.

C. 10.

D. 8.
Trang 10/10 Mã đề 1


x2 − 5x + 6
Câu 129. Tính giới hạn lim
x→2
x−2

A. −1.
B. 5.

Câu 130. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 108.

C. 1.

D. 0.

C. 4.

D. 6.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

C


3.

D

4. A

5.

B

6.

B

7.

B

8.

B

9.

C

10.

11.


D

12.

13.

D

14. A

C
D

15. A

16.

17. A

18.

D

20.

D

19.
21.


D
B

22.

23.

C

24.

25.

C

26. A

27.

D
B

30. A

31.

B

32. A

D

36. A
38.
40.

C
D

44. A

C

37.

C

41.

D

43.

D

45.

D

B


47.

48.

B

49. A

52.

C
B

54.

D

58.

51.

D

53.

D

57.


C

60.

B

55. A

C

56.

C

34.

46.
50.

C

39. A

B

42.

B

28.


29.
33.

B

D

59.

D

61.

D
D

62.

B

63.

64.

B

65.

66.


D

67. A

68.

D

69. A
1

C

B


70.

C

71.

C

72.

C

73.


C

74.

C

75.

76.

D

78. A
80.

B

77.

C

79.

C

81.

C


82. A

83.

D
B

84.

B

85.

86.

B

87. A

88.

B

89.

C

91.

C


90. A
92.

C

93.

94.

C

95. A
D

96.
98.

B

97. A

B

100. A
102.

C

C


99.

D

101.

D

103.

104.

B

105. A

106.

B

107. A

108.

B

109.

111.


B

112.

113.

D

114. A

115.

D

116.

B

D
B
C

117.

B

118.

B


119.

B

120.

B

121.

C

122.

123.

C

124. A

125.

B

126.

127.

B


128. A

129. A

130.

2

C
B
C



×