Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều rộng
bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 2. [4-1246d] Trong tất cả √
các số phức z thỏa mãn |z √
− i| = 1. Tìm giá trị lớn nhất của |z|
A. 2.
B. 3.
C. 5.
D. 1.
2x + 1
Câu 3. Tính giới hạn lim
x→+∞ x + 1
1
B. 1.
C. 2.
D. −1.
A. .
2
Câu 4. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 10 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 5. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B.
.
C. 18.
D. 12.
2
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử của
Câu 6. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
S bằng
A. 3.
B. 2.
C. 4.
D. 5.
√
Câu 7. Thể
√ tích của khối lập phương có cạnh bằng a 2
3
√
√
2a 2
A.
.
B. 2a3 2.
C. V = a3 2.
D. V = 2a3 .
3
Câu 8. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên n lần.
B. Khơng thay đổi.
C. Giảm đi n lần.
D. Tăng lên (n − 1) lần.
!
1
1
1
+ ··· +
Câu 9. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. +∞.
C. .
D. 2.
2
2
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 10. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
3
3
√
a3 3
a
2
a
3
A.
.
B. 2a2 2.
C.
.
D.
.
12
24
24
Câu 11. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 64cm3 .
C. 72cm3 .
D. 27cm3 .
Câu 12. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
1
Câu 13. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 ≤ m ≤ −1.
C. −2 < m < −1.
D. (−∞; −2] ∪ [−1; +∞).
Trang 1/10 Mã đề 1
Câu 14. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.
C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
Câu 15. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 0.
D. 22016 .
Câu 16. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m , 0.
D. m < 0.
Câu 17. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√
√
√ Thể tích khối chóp S 3.ABC
3
a 2
a3 3
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
4
12
12
6
1
Câu 18. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. −1.
C. 2.
D. 1.
Câu 19. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√
√ N, P bằng
√
√
20 3
14 3
.
B. 8 3.
C. 6 3.
D.
.
A.
3
3
Câu 20. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
n2 − 2
n2 − 3n
A. un =
.
B.
u
=
.
C.
u
=
.
D.
u
=
.
n
n
n
(n + 1)2
5n + n2
5n − 3n2
n2
2
2
sin x
Câu 21.
+ 2cos x lần
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm số f (x) = 2
√ lượt là
A. 2 và 3.
B. 2 và 2 2.
C. 2 và 3.
D. 2 2 và 3.
Câu 22. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là
√
8a3 3
a3 3
8a3 3
4a3 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
Câu 23. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tam giác.
Câu 24. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. − .
C. −e.
e
2e
D. −
1
.
e2
Câu 25. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. − < m < 0.
C. m ≥ 0.
D. m > − .
4
4
2n − 3
Câu 26. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 1.
C. 0.
D. +∞.
Câu 27. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. 5.
B. 5.
C. .
5
√
D. 25.
Trang 2/10 Mã đề 1
Câu 28. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
√
D. |z| = 10.
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
d = 30◦ , biết S BC là tam giác đều
Câu 29. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
16
26
9
Câu 30. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 23.
C. 22.
D. 24.
Câu 31. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 4.
C. 2.
D. 5.
Câu 32. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
−2
C. M = e + 2; m = 1.
D. M = e−2 + 1; m = 1.
√
Câu 33. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 4.
C. 108.
D. 36.
Câu 34.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
.
B.
.
A.
12
6
√
√
a3 2
a3 2
C.
.
D.
.
4
2
1
Câu 35. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Câu 36. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là
√
√ với đáy và S C = a 3.3 √
a 6
a3 3
2a3 6
a3 3
.
B.
.
C.
.
D.
.
A.
2
12
4
9
x2 − 9
Câu 37. Tính lim
x→3 x − 3
A. −3.
B. +∞.
C. 3.
D. 6.
Câu 38. Dãy số nào có giới hạn bằng 0?
!n
!n
6
−2
2
A. un = n − 4n.
B. un =
.
C. un =
.
5
3
x−2
Câu 39. Tính lim
x→+∞ x + 3
2
A. − .
B. 2.
C. 1.
3
Câu 40. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2
√
A. −3 − 4 2.
B. 3 − 4 2.
C. 3 + 4 2.
D. un =
n3 − 3n
.
n+1
D. −3.
√
D. −3 + 4 2.
Câu 41. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a
a 3
A. .
B. .
C.
.
D. a.
3
2
2
d = 120◦ .
Câu 42. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 4a.
C. 3a.
D. 2a.
2
Trang 3/10 Mã đề 1
Câu 43. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. 2.
C. 1.
D. +∞.
Câu 44. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −10.
C. P = 10.
D. P = −21.
Câu 45. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối tứ diện.
C. Khối bát diện đều.
D. Khối lăng trụ tam giác.
Câu 46. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
√
3
3
√
a3 5
a
a
6
15
A.
.
B. a3 6.
C.
.
D.
.
3
3
3
Câu 47. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 3, 03 triệu đồng.
Câu 48. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
.
B.
.
C. a 2.
D. 2a 2.
A.
4
2
Câu 49.! Dãy số nào sau đây có giới! hạn là 0?
!n
!n
n
n
4
1
5
5
A.
.
B. − .
C.
.
D.
.
e
3
3
3
Câu 50. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
24
6
36
x2 − 5x + 6
Câu 51. Tính giới hạn lim
x→2
x−2
A. 1.
B. −1.
C. 5.
D. 0.
Câu 52. Hàm số nào sau đây không có cực trị
1
x−2
A. y = x + .
B. y = x3 − 3x.
C. y =
.
D. y = x4 − 2x + 1.
x
2x + 1
Câu 53. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 7%.
C. 0, 8%.
D. 0, 5%.
Câu 54. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 2020.
C. 13.
D. log2 13.
Câu 55. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối chóp S .ABMN là
Trang 4/10 Mã đề 1
√
2a3 3
A.
.
3
√
4a3 3
B.
.
3
√
5a3 3
C.
.
3
√
a3 3
D.
.
2
x+3
Câu 56. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 2.
C. 3.
D. Vô số.
Câu 57. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = (0; +∞).
C. D = R.
D. D = R \ {1}.
Câu 58. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là
√
3
3
3
4a
2a
2a 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
3a
Câu 59. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a 2
2a
a
a
B.
.
C.
.
D. .
A. .
4
3
3
3
√
Câu 60. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A. 2; .
;3 .
B.
C. (1; 2).
D. [3; 4).
2
2
Câu 61. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 8.
C. 12.
D. 30.
Câu 62. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 63. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 3}.
−2x2
Câu 64. [2-c] Giá trị lớn nhất của hàm số y = xe
2
1
B. 3 .
A. √ .
e
2 e
trên đoạn [1; 2] là
1
C. 3 .
2e
D. {5; 3}.
D.
1
.
e2
Câu 65. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng 2n+1.
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2).
C. [2; +∞).
D. (−∞; 2].
Câu 66. [4-1213d] Cho hai hàm số y =
Trang 5/10 Mã đề 1
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
Câu 67. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.
Câu 68. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
!4x
!2−x
3
2
≤
là
Câu 69. Tập các số x thỏa mãn
#
" 3 ! 2
#
"
!
2
2
2
2
B.
; +∞ .
C. −∞; .
D. − ; +∞ .
A. −∞; .
5
5
3
3
Câu 70. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Khơng có.
D. Có vơ số.
Câu 71.
Z Trong các khẳng định sau, khẳng định nào sai? Z
xα+1
1
dx = ln |x| + C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
A.
α+1
Z x
Z
C.
0dx = C, C là hằng số.
Câu 72. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
D.
dx = x + C, C là hằng số.
C. {5; 3}.
Câu 73. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình lăng trụ.
C. Hình chóp.
D. {4; 3}.
D. Hình tam giác.
Câu 74. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
B. aα bα = (ab)α .
C. aαβ = (aα )β .
D. aα+β = aα .aβ .
A. β = a β .
a
Câu 75. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.
Câu 76. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 77. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
.
B. √
.
C. 2
.
A. √
.
D. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
[ = 60◦ , S A ⊥ (ABCD).
Câu 78. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
√
a3 2
a3 2
a3 3
A.
.
B.
.
C.
.
D. a3 3.
12
4
6
Câu 79. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 5 mặt.
D. 3 mặt.
Trang 6/10 Mã đề 1
Câu 80. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
.
D. 26.
A. 2 13.
B. 2.
C.
13
Câu 81. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (II) đúng.
C. Chỉ có (I) đúng.
D. Cả hai câu trên sai.
Câu 82. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 83. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là √
√
3
3
3
√
a
3
3
3
a
2a
B.
.
C.
.
D.
.
A. a3 3.
3
6
3
Câu 84. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng
√
√
√
b a2 + c2
c a2 + b2
a b2 + c2
abc b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 85. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 10.
C. 12.
D. 6.
Câu 86.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 1.
D. 2.
Câu 87. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 10.
C. 12.
D. 30.
Z 1
Câu 88. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
.
C. 0.
4
Câu 89. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Tứ diện đều.
C. Bát diện đều.
A. 1.
B.
√
√
D.
1
.
2
D. Thập nhị diện đều.
− 3m + 4 = 0 có nghiệm
3
9
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
2
x
Câu 91. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = , m = 0.
C. M = e, m = 1.
D. M = e, m = .
e
e
Câu 92. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
A. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Câu 90. [12215d] Tìm m để phương trình 4 x+
3
A. m ≥ 0.
B. 0 < m ≤ .
4
1−x2
− 4.2 x+
1−x2
Trang 7/10 Mã đề 1
!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
√
Câu 93. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
6
2
6
Câu 94. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
a
5a
8a
.
B.
.
C. .
D.
.
A.
9
9
9
9
Câu 95. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (−∞; 1).
C. (0; 2).
D. (2; +∞).
Câu 96. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x) − g(x)] = a − b.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) + g(x)] = a + b.
x→+∞
1
bằng
Câu 97. [1] Giá trị của biểu thức log √3
10
1
A. .
B. −3.
3
Câu 98. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 12.
x→+∞
C. 3.
1
D. − .
3
C. 30.
D. 8.
Câu 99. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −3.
C. −5.
D. Không tồn tại.
1 − 2n
Câu 100. [1] Tính lim
bằng?
3n + 1
1
2
2
A. 1.
B. .
C. .
D. − .
3
3
3
x−1
Câu 101. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
√
A. 6.
B. 2 2.
C. 2.
D. 2 3.
log 2x
là
Câu 102. [1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1 − 2 ln 2x
1
1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
x ln 10
2x ln 10
x3
Câu 103. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 104. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD
√ là
3
3
3
4a 3
a
2a 3
a3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
Trang 8/10 Mã đề 1
Câu 105. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 12 m.
C. 24 m.
D. 16 m.
Câu 106. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. −2e2 .
D. 2e2 .
√
Câu 107. Xác định phần ảo của √
số phức z = ( 2 + 3i)2
√
C. −6 2.
D. −7.
A. 7.
B. 6 2.
Câu 108. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Ba mặt.
C. Bốn mặt.
D. Hai mặt.
Câu 109. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m ≤ .
D. m > .
4
4
4
4
log7 16
Câu 110. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. −4.
B. −2.
C. 4.
D. 2.
Câu 111.
√ Thể tích của khối lăng trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
A.
.
B. .
C.
.
4
4
2
Câu 112. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 72.
C. −7, 2.
√
3
D.
.
12
D. 7, 2.
Câu 113. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P √
= z4 + 2z3 − z
√
−1 + i 3
−1 − i 3
.
D. P =
.
A. P = 2i.
B. P = 2.
C. P =
2
2
Câu 114. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. Cả ba đáp án trên.
4x + 1
bằng?
Câu 115. [1] Tính lim
x→−∞ x + 1
A. 2.
B. −1.
C. −4.
D. 4.
Câu 116. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 3
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
48
24
8
Câu 117. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.
B. 0.
C. 2.
log 2x
Câu 118. [3-1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
3
2x ln 10
2x ln 10
x3
D. 1.
D. y0 =
1 − 2 ln 2x
.
x3 ln 10
Trang 9/10 Mã đề 1
Câu 119. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 8.
C. 6.
D. 4.
Z 3
x
a
a
Câu 120. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 16.
C. P = 4.
D. P = −2.
Câu 121. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [1; +∞).
D. [−1; 3].
Câu 122. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là 4, phần ảo là 1.
Câu 123. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim un = c (un = c là hằng số).
Câu 124. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 20.
1
= 0.
nk
n
D. lim q = 0 (|q| > 1).
B. lim
C. 30.
D. 8.
Câu 125. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và√AD bằng
√
√
a 2
a 2
.
B.
.
C. a 2.
D. a 3.
A.
2
3
ln2 x
m
Câu 126. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e
các số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 22.
C. S = 32.
D. S = 135.
Câu 127. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
2n + 1
Câu 128. Tìm giới hạn lim
n+1
A. 2.
B. 3.
C. 1.
D. 0.
2
Câu 129. Tính
√ mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
B. |z| = 5.
C. |z| = 5.
A. |z| = 2 5.
√4
5.
[ = 60◦ , S O
Câu 130. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng
√
√
a 57
a 57
2a 57
A.
.
B.
.
C. a 57.
D.
.
19
17
19
D. |z| =
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
2. A
3.
C
4.
5.
C
6.
C
8.
C
C
7.
B
9.
D
10.
11.
D
12.
13.
B
D
B
14.
C
C
15.
C
16.
17.
C
18. A
19.
C
20.
B
22.
B
24.
B
21.
D
23.
C
25.
D
26.
27.
D
28.
29. A
D
30.
31.
B
32. A
33.
B
34. A
35. A
36.
37.
D
39.
C
D
42. A
43.
B
44.
45.
B
46.
47.
C
48.
49.
C
50. A
51.
B
52.
53.
B
54.
D
D
C
B
C
D
56.
57.
C
58. A
59.
C
60.
61.
C
62. A
63.
B
40.
D
55.
C
38.
C
41.
D
C
B
64.
65. A
67.
C
D
66.
B
68.
1
C
B
69.
71.
D
B
D
73.
77.
B
72.
B
74. A
C
75.
70.
76.
78.
B
79. A
80.
81. A
82.
83.
C
B
D
C
86.
D
89.
90.
91. A
92.
93. A
94. A
C
95.
C
B
96. A
97.
D
98.
99.
D
100.
101.
D
102.
103.
D
104. A
105.
D
106. A
B
109.
D
88.
C
87.
B
D
B
108.
C
C
110. A
111. A
113.
B
84.
B
85. A
107.
C
112.
B
114.
115.
D
116.
C
B
C
117.
C
118.
119.
C
120.
C
122.
C
124.
C
126.
C
121. A
D
123.
125. A
127.
129.
128. A
C
D
130. A
2
D