Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 1 (601)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.17 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Tính lim
A. 0.

5
n+3

B. 3.

C. 1.

D. 2.

Câu 2. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.


4e + 2
4 − 2e
4e + 2
Câu 3. Mệnh đề nào sau đây sai?

D. m =
Z

A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
B.
f (x)dx = f (x).

1 + 2e
.
4 − 2e

f (x)dx = F(x) + C.

C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!
3n + 2
2
Câu 4. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử của
n+2
S bằng
A. 2.

B. 5.
C. 4.
D. 3.
log 2x

Câu 5. [1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
A. y0 =
3
2x ln 10
2x ln 10
x ln 10
x3
Câu 6. Bát diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 3}.


D. {3; 4}.

Câu 7. √
Thể tích của tứ diện đều cạnh
√ bằng a
3
3
a 2
a 2
A.
.
B.
.
2
4


a3 2
C.
.
6


a3 2
D.
.
12

Câu 8. Cho hình chóp S .ABCD có
√ đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm của

AD, biết S√H ⊥ (ABCD), S A = a 5. Thể tích khối chóp S .ABCD


3
3
3
2a
4a 3
4a3
2a 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 9. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 12.
C. ln 14.
D. ln 10.


Câu 10. [12215d] Tìm m để phương trình 4 x+

9
A. 0 ≤ m ≤ .
B. m ≥ 0.
4
Câu 11.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

1−x2



− 3m + 4 = 0 có nghiệm
3
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4

− 4.2 x+

Z

1−x2

!0


f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
f (x)dx = f (x).
Z
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.

Câu 12. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −10.
C. P = 21.
D. P = −21.
Trang 1/11 Mã đề 1


Câu 13. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 10.

C. 8.

D. 6.

Câu 14. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực

x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m > 3.
D. m < 3.

Câu 15. √Xác định phần ảo của số phức z = ( 2 + 3i)2 √
A. −6 2.
B. 7.
C. 6 2.
D. −7.
Câu 16. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. 2n2 lần.
C. n3 lần.
D. n3 lần.
Câu 17. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m < 0.
log2 240 log2 15

+ log2 1 bằng
Câu 18. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 1.
C. 4.
2n + 1

Câu 19. Tìm giới hạn lim
n+1
A. 3.
B. 2.
C. 0.

D. m , 0.

D. 3.
D. 1.

Câu 20. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 3.

C. 1.

Câu 21. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. Vô nghiệm.

D. 2.
D. 3.

Câu 22. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức

P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B.
.
C. 18.
D. 27.
2
Câu 23. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 4.

C. 3.

D. 1.

Câu 24. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. 2
.
B. √

.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
mx − 4
Câu 25. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 67.
C. 34.
D. 45.
Trang 2/11 Mã đề 1


Câu 26. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 220 triệu.
C. 212 triệu.
D. 210 triệu.

Câu 27. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
D. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m < 0 ∨ m > 4.

Câu 28. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.

B. m ≤ 0.

Câu 29. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 20.
C. 12.
D. 8.
x−2
Câu 30. Tính lim

x→+∞ x + 3
2
A. − .
B. 2.
C. 1.
D. −3.
3
Câu 31. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 2
a3 6
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
24
16
48
48

Câu 32. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 33. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là



a3 3
a3 3
2a3 3
3
A.
.
B. a 3.
C.
.
D.
.
3
3
6
2−n
Câu 34. Giá trị của giới hạn lim
bằng
n+1

A. 2.
B. −1.
C. 0.
D. 1.
Câu 35. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. − 2 .
C. −e.
2e
e
Câu 36. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. 2.
C. −2.

1
D. − .
e
D. −4.

Câu 37. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



b a2 + c2

a b2 + c2
c a2 + b2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
1
Câu 38. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −1.
C. 2.
D. −2.
Trang 3/11 Mã đề 1


Câu 39. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 3.


B. 1.

C. +∞.

Câu 40. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 5 mặt.
C. 3 mặt.

D. 2.
D. 6 mặt.

Câu 41. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −15.
C. −12.
D. −5.
Câu 42. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≥ 3.
C. m ≤ 3.
D. −2 ≤ m ≤ 2.
Câu 43. Tính lim
x→3

A. 3.

x2 − 9
x−3


B. +∞.

Câu 44. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 20.

C. 6.

D. −3.

C. 12.

D. 8.

Câu 45. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
2a
a
B.
.
C.
.
D.
.
A. .
9

9
9
9
Câu 46. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 2.
C. 1.
D. 0.


Câu 47. Phần thực và √
phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 1√− 2, phần ảo là − √3.
B. Phần thực là √2 − 1, phần ảo là √3.
D. Phần thực là 2, phần ảo là 1 − 3.
C. Phần thực là 2 − 1, phần ảo là − 3.

Câu 48. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
3a 38
3a 58
a 38
A.

.
B.
.
C.
.
D.
.
29
29
29
29
Câu 49. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; 1).
C. (−∞; −1).

D. (−1; 1).

Câu 50. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z

Z
0
C. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 51. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 52. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 13.

D. 9.
Trang 4/11 Mã đề 1


Câu 53. Khối lập phương thuộc loại
A. {3; 4}.
B. {3; 3}.

C. {5; 3}.


D. {4; 3}.

Câu 54. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+2
c+1
c+3
c+2

Câu 55. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 2
a3 6

a3 6
A.
.
B.
.
C.
.
D.
.
36
6
18
6
Z 3
x
a
a
Câu 56. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = −2.
C. P = 28.
D. P = 4.

Câu 57. Thể tích của khối lập phương

√ có cạnh bằng a 2
3


2a 2
A. V = 2a3 .
B.
.
C. V = a3 2.
D. 2a3 2.
3
x2 − 12x + 35
Câu 58. Tính lim
x→5
25 − 5x
2
2
A. −∞.
B. .
C. − .
D. +∞.
5
5
Câu 59. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R.

C. D = R \ {0}.

D. D = (0; +∞).


Câu 60. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 61. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 18 tháng.
C. 17 tháng.
D. 16 tháng.
n−1
Câu 62. Tính lim 2
n +2
A. 3.
B. 1.

C. 2.

D. 0.

Câu 63. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối tứ diện.
C. Khối bát diện đều.
D. Khối lăng trụ tam giác.
Câu 64. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của

khối chóp A.GBC
A. V = 4.
B. V = 5.
C. V = 6.
D. V = 3.
Câu 65. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. (−1) .
B. (− 2) .

C. 0−1 .

D.

Câu 66. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.

C. Khối 12 mặt đều.

D. Khối tứ diện đều.


−1.

−3

Trang 5/11 Mã đề 1



Câu 67.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
( f (x) + g(x))dx =

A.
Z
C.

( f (x) − g(x))dx =

f (x)dx +

Z

g(x)dx.

f (x)dx −

k f (x)dx = f

B.

Z

Z
g(x)dx.

Câu 68. Khối đa diện đều loại {3; 4} có số mặt
A. 10.

B. 8.

D.

f (x)g(x)dx =

C. 12.

Câu 69. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lăng trụ.
C. Hình chóp.
Câu 70. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 12.
1 − 2n
bằng?
Câu 71. [1] Tính lim
3n + 1
2
A. 1.
B. − .
3

C. 20.

C.

1
.

3

Z

f (x)dx, k ∈ R, k , 0.
Z
f (x)dx g(x)dx.

D. 6.
D. Hình lập phương.
D. 30.

D.

2
.
3

Câu 72. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
B. .
C. 6.
D. 9.
A. .
2
2
log7 16
Câu 73. [1-c] Giá trị của biểu thức

bằng
log7 15 − log7 15
30
A. −2.
B. 2.
C. −4.
D. 4.
Câu 74. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 1.
C. 22016 .
D. e2016 .
tan x + m
Câu 75. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. (−∞; −1) ∪ (1; +∞). D. [0; +∞).
Câu 76. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [1; +∞).
C. [−1; 3].
D. [−3; 1].

Câu 77. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.

Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A.
;3 .
B. 2; .
C. [3; 4).
D. (1; 2).
2
2
Câu 78. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 3.
C. T = e + .
D. T = e + 1.
e
e
Câu 79. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. e.
D. 4 − 2 ln 2.
Câu 80. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.

B. 0, 5%.
C. 0, 7%.
D. 0, 6%.
Trang 6/11 Mã đề 1


Câu 81. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.

C. 4.

D. 2.

Câu 82. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).

C. (0; 2).

D. (−∞; 0) và (2; +∞).

Câu 83. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. −1 + 2 sin 2x.
C. 1 + 2 sin 2x.

Câu 84. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1

A. − .
B. 3.
C. .
3
3

D. 1 − sin 2x.

D. −3.

Câu 85. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng



2a 3
a 3
a 3
A.
.
B.
.
C.
.
D. a 3.
2
2
3


Câu 86. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a3
a3 3
a 3
.
B.
.
C.
.
D. a3 3.
A.
3
4
12
!
1
1
1
Câu 87. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5

B. .
C. +∞.
D. 2.
A. .
2
2
d = 120◦ .
Câu 88. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B. 4a.
C.
.
D. 2a.
2
1 − n2
bằng?
Câu 89. [1] Tính lim 2
2n + 1
1
1
1
A. − .
B. .
C. 0.
D. .
2
2
3

Câu 90. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 25 m.
D. 387 m.
Câu 91. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 10.
B. f 0 (0) =
.
C. f 0 (0) = ln 10.
ln 10
cos n + sin n
Câu 92. Tính lim
n2 + 1
A. 1.
B. 0.
C. +∞.

D. f 0 (0) = 1.

D. −∞.

Câu 93. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.

C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là −4.
ln x p 2
1
Câu 94. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .
3
9
3
9
Trang 7/11 Mã đề 1


Câu 95. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 8.

C. 12.

D. 20.


Câu 96. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
= −∞.
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
Câu 97. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. .
B. −2.
C. 2.
2

1
D. − .
2

Câu 98. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 99. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 6
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
24
24
48
8
Câu 100. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Năm mặt.

C. Hai mặt.

D. Bốn mặt.
π
Câu 101. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


C. T = 2 3.
D. T = 2.
A. T = 4.
B. T = 3 3 + 1.
Câu 102. √
Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i.
4
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.

D. |z| =


5.

d = 30◦ , biết S BC là tam giác đều
Câu 103. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √

góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
13
16
26
Câu 104. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 6
a3 5
a3 15
3
A.
C.

.
B. a 6.
.
D.
.
3
3
3
1
Câu 105. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Câu 106. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Một mặt.
C. Ba mặt.

D. Bốn mặt.

Câu 107. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.

B. V = 4π.
C. 16π.
D. 8π.
Trang 8/11 Mã đề 1


x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. [2; +∞).
C. (−∞; 2].
D. (2; +∞).
Câu 108. [4-1213d] Cho hai hàm số y =

Câu 109. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. 3n3 lần.
C. n3 lần.
D. n lần.
Câu 110. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng

a 3
a
a
A.
.
B. a.
C. .
D. .
2
3
2
Câu 111. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
4
12
6
12

7n2 − 2n3 + 1
Câu 112. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. 1.
C. 0.
D. - .
3
3
Câu 113. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Bát diện đều.
B. Tứ diện đều.
C. Thập nhị diện đều. D. Nhị thập diện đều.
 π
Câu 114. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
2 π4
1 π3
e .
e .
C. e .
D.
A. 1.
B.
2

2
2
Câu 115. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD


3
3
a
a3
a
3
3
.
C.
.
D.
.
A. a3 .
B.
9
3
3
Câu 116. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −3.
C. Không tồn tại.
D. −5.
[ = 60◦ , S O

Câu 117. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng


a 57
a 57
2a 57
A. a 57.
B.
.
C.
.
D.
.
17
19
19
Câu 118. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .

6
15
9
18
Câu 119. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 120. Tính thể tích khối lập √
phương biết tổng diện tích tất cả các mặt bằng 18.
A. 9.
B. 3 3.
C. 27.
D. 8.
Trang 9/11 Mã đề 1


Câu 121. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp đôi.
C. Tăng gấp 4 lần.
D. Tăng gấp 6 lần.
Câu 122. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 20.

C. 8.


D. 30.

Câu 123. Điểm cực đại của đồ thị hàm số y = 2x − 3x − 2 là
A. (1; −3).
B. (2; 2).
C. (0; −2).
3

2

D. (−1; −7).

Câu 124. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→a

x→b

x→b


Câu 125. [1] Đạo hàm của làm số y = log x là
1
1
A. y0 = .
B. y0 =
.
x
x ln 10
Câu 126. Hàm số nào sau đây khơng có cực trị
x−2
A. y = x3 − 3x.
B. y =
.
2x + 1
Câu 127. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
A. un =
.
B.
u
=
.
n
n2
(n + 1)2

C. y = x4 − 2x + 1.

Câu 128.

hạn là 0?
!n Dãy số nào sau đây có !giới
n
4
5
A.
.
B.
.
e
3

!n
1
C.
.
3

C. y0 =

ln 10
.
x

C. un =

n2 − 2
.
5n − 3n2


D.

1
.
10 ln x

1
D. y = x + .
x
D. un =

1 − 2n
.
5n + n2

!n
5
D. − .
3

Câu 129. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
1
bằng
Câu 130. [1] Giá trị của biểu thức log √3
10
1
1
A. −3.
B. .

C. − .
D. 3.
3
3
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

C
C

3.

C

4.

5.

C

6.


D

8.

D

D

7.
C

9.

C

10.

D

12.

11. A
13.

D

15.

14.

16.

C

17.

B

D

C

18. A

19.

B

20.

21.

B

22.

23.

C


24.

25.

C

26.

27. A

D
C
B
C

28. A
C

29.
31.

C

30.
D

32.

B


33. A

34.

B

35. A

36.

37.

38.

B

39.

D
C

42. A

43.

C

44.

C


49.

D

50.

D

55.

56.
D

58.

B

D
B

60.

61.

67.

D

54. A


C

57.

65.

C

52. A

53.

63.

D

48.

51. A

59.

B

46.

B

47.


D

40. A

41.
45.

C

D

C

62.

B

D

64. A
C

66.
D

68.
1

C

B


69. A
71.

70.
B

73.
75.

72. A
74. A

C

76.

B

77. A

78.

79.

C

80.


81.

C

82.

83.

B

85.

B
C
D
C

86. A

C
D

88.

89. A

C

90. A


91.

92.

C

93. A

94.

95. A

96. A

97.

B

99.

B

B
D

98.

C


100. A

101. A

102. A
B

104. A
106.

105. A
108.

B

109.

110.

B

111.

112.

D

113.

114.


D

115.

116.

C

117.

119.

C

120.

D
C
D
C
D
C
B

122.

121. A
123.
125.


D

84.

87.

103.

B

D

124.

C
B

126.

C
B

127.

D

128.

C


129.

D

130.

C

2



×