Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
.
B.
.
C. a 6.
D.
.
A.
6
2
3
Câu 2. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1.
√
1
3
3
A. .
B. .
C. 1.
D.
.
2
2
2
1
Câu 3. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. 3.
B. .
C. − .
D. −3.
3
3
Câu 4. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−∞; −1).
D. (−1; 1).
Câu 5. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
B.
.
A. .
n
n
1
D. √ .
n
C.
sin n
.
n
Câu 6. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3
3
3
√
a 3
a 2
a 3
D.
.
B.
.
C. a3 3.
.
A.
2
2
4
Câu 7. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
15
9
6
2
Câu 8. Tính
√ mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √4
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
√
D. |z| = 2 5.
Câu 9. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 70, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 20, 128 triệu đồng.
Câu 10. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.
D. 102.016.000.
!
1
1
1
Câu 11. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 0.
B. 1.
C. 2.
D. .
2
Câu 12. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. −2 + 2 ln 2.
C. 4 − 2 ln 2.
D. 1.
Trang 1/10 Mã đề 1
Câu 13. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
A. 2
.
B.
.
C.
.
D.
.
√
√
√
a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 14. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 15
a3 5
a 6
.
B.
.
C.
.
D. a3 6.
A.
3
3
3
Câu 15. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C. a3 .
D.
.
A.
24
12
6
Câu 16. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m > 0.
D. m < 0.
Câu 17. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
x2 − 5x + 6
x→2
x−2
B. 0.
Câu 18. Tính giới hạn lim
A. 5.
C. −1.
D. 1.
Câu 19. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 20. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
Câu 21. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.
C. y0 = 1 + ln x.
Câu 22. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị lớn nhất trên K.
B. f (x) liên tục trên K.
D. f (x) có giá trị nhỏ nhất trên K.
Câu 23. Tính lim
x→2
A. 3.
x+2
bằng?
x
B. 2.
C. 1.
log 2x
Câu 24. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1 − 4 ln 2x
1
A. y0 =
.
B. y0 =
.
C. y0 = 3
.
3
3
x
2x ln 10
2x ln 10
D. y0 = 1 − ln x.
D. 0.
D. y0 =
1 − 2 ln 2x
.
x3 ln 10
Trang 2/10 Mã đề 1
Câu 25. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 1.
B. +∞.
C. −∞.
B. 6.
C. −3.
un
bằng
vn
D. 0.
2
Câu 26. Tính lim
x→3
A. 3.
x −9
x−3
D. +∞.
Câu 27. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
B. 7.
C.
.
D. 5.
A. .
2
2
Câu 28. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.
C. 6.
D. 4.
Câu 29. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 1587 m.
C. 27 m.
D. 25 m.
Câu 30. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
B. m = ±1.
C. m = ± 3.
D. m = ±3.
A. m = ± 2.
4x + 1
bằng?
Câu 31. [1] Tính lim
x→−∞ x + 1
A. −4.
B. 4.
C. 2.
D. −1.
Câu 32. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Ba mặt.
C. Bốn mặt.
D. Hai mặt.
√
Câu 33. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√
√
√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 2
a 6
.
B.
.
C.
.
D.
.
A.
6
18
36
6
Câu 34. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 35.√Thể tích của tứ diện đều √
cạnh bằng a
√
3
3
a 2
a 2
a3 2
A.
.
B.
.
C.
.
4
2
6
Câu 36. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số cạnh của khối chóp bằng 2n.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
√
a3 2
D.
.
12
Câu 37. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .
1
Câu 38. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. (−∞; −2) ∪ (−1; +∞). C. −2 < m < −1.
D. −2 ≤ m ≤ −1.
Câu 39. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −3.
D. m = −1.
Trang 3/10 Mã đề 1
Câu 40. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Hai cạnh.
C. Ba cạnh.
D. Năm cạnh.
Câu 41. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.
D. {4; 3}.
Câu 42. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 8.
C. 4.
D. 10.
Câu 43. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.
C. Trục thực.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 44. Bát diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 3}.
√
Câu 45. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. Vơ số.
D. 63.
Câu 46. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m < .
D. m > .
4
4
4
4
2
Câu 47. Giá trị của lim(2x − 3x + 1) là
x→1
C. +∞.
D. 0.
1 − xy
Câu 48. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.
√
√
√
2 11 − 3
9 11 + 19
18 11 − 29
9 11 − 19
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
A. Pmin =
9
3
9
21
Câu 49. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.
A. 1.
B. 2.
Câu 50. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
4
8
4
12
Câu 51. Phát biểu nào sau đây là sai?
1
B. lim un = c (Với un = c là hằng số).
A. lim k = 0 với k > 1.
n
1
C. lim √ = 0.
D. lim qn = 1 với |q| > 1.
n
Câu 52. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a = − loga 2.
D. log2 a =
.
loga 2
log2 a
Câu 53. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Trang 4/10 Mã đề 1
Câu 54. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 1.
B. 3.
C. 2.
D. 5.
Câu 55. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 10 năm.
D. 14 năm.
Câu 56. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Cả hai đều sai.
D. Chỉ có (I) đúng.
Z 1
6
2
3
Câu 57. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. −1.
B. 4.
C. Chỉ có (II) đúng.
C. 6.
D. 2.
Câu 58. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
a3 3
a3 3
2a3 3
3
.
B.
.
C. a 3.
.
A.
D.
3
6
3
Câu 59. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 20.
C. 12.
D. 10.
Câu 60. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 8.
B. 9.
C. 3 3.
D. 27.
Câu 61. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
C. Khối bát diện đều.
D. Khối 12 mặt đều.
Câu 62. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
A. √
.
D.
.
B. √
.
C. 2
.
√
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 63. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 2.
C. 1.
D. 6.
Câu 64. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 27cm3 .
C. 72cm3 .
D. 64cm3 .
!2x−1
!2−x
3
3
Câu 65. Tập các số x thỏa mãn
≤
là
5
5
A. (−∞; 1].
B. [3; +∞).
C. (+∞; −∞).
D. [1; +∞).
Câu 66. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−1; 3].
C. [−3; 1].
D. (−∞; −3].
n−1
Câu 67. Tính lim 2
n +2
A. 2.
B. 0.
C. 3.
D. 1.
Trang 5/10 Mã đề 1
Câu 68. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 1.
C. T = e + 3.
D. T = e + .
A. T = 4 + .
e
e
!4x
!2−x
2
3
Câu 69. Tập các số x thỏa mãn
≤
là
#
" 3
! 2
#
"
!
2
2
2
2
A. −∞; .
B. − ; +∞ .
C. −∞; .
D.
; +∞ .
3
3
5
5
Câu 70. Tính lim
A. −∞.
Câu 71. Hàm số y =
A. x = 0.
2n − 3
bằng
+ 3n + 1
B. 0.
C. +∞.
D. 1.
x − 3x + 3
đạt cực đại tại
x−2
B. x = 2.
C. x = 1.
D. x = 3.
2n2
2
Câu 72. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
4a 3
8a 3
8a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
Câu 73. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt
√
2
2
2
a 5
11a
a2 7
a 2
.
B.
.
C.
.
D.
.
A.
4
16
32
8
Câu 74. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 9.
x−3
Câu 75. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. 0.
C. 7.
D. 0.
C. +∞.
D. −∞.
1
Câu 76. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Câu 77. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
√
a 2
a 2
A. a 2.
B. 2a 2.
C.
.
D.
.
4
2
!
3n + 2
2
Câu 78. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 2.
C. 5.
D. 4.
x+3
Câu 79. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 3.
C. 1.
D. 2.
Câu 80. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 20.
C. 12.
D. 8.
Trang 6/10 Mã đề 1
Câu 81. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 3).
C. (2; 4; 6).
D. (1; 3; 2).
Câu 82. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 12.
C. 8.
D. 20.
Câu 83. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 3
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
8
24
24
48
x−2
Câu 84. Tính lim
x→+∞ x + 3
2
A. −3.
B. 2.
C. 1.
D. − .
3
Câu 85. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 3.
C. V = 6.
D. V = 4.
Câu 86. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
12
4
12
6
Câu 87. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Hai khối chóp tứ giác.
8
Câu 88. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 81.
C. 96.
D. 64.
Câu 89. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD là
√
3
3
a 3
a
a
3
A.
.
B. a3 .
C.
.
D.
.
3
3
9
Câu 90. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.
B. Chỉ có (II) đúng.
C. Cả hai câu trên đúng. D. Chỉ có (I) đúng.
Câu 91. Tìm giá trị lớn chất của hàm số y = x − 2x − 4x + 1 trên đoạn [1; 3].
67
A.
.
B. −7.
C. −2.
D. −4.
27
Câu 92. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 4.
C. 2.
D. 3.
3
Câu 93. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.
2
C. Khối 12 mặt đều.
D. Khối tứ diện đều.
Trang 7/10 Mã đề 1
Câu 94. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 8, 16, 32.
B. 2 3, 4 3, 38.
C. 2, 4, 8.
D. 6, 12, 24.
Câu 95. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.
D. 9 mặt.
Câu 96. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 97. Hàm số nào sau đây khơng có cực trị
1
x−2
.
C. y = x3 − 3x.
D. y = x + .
A. y = x4 − 2x + 1.
B. y =
2x + 1
x
d = 300 .
Câu 98. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.
√
3
√
3a 3
a3 3
3
3
A. V =
.
B. V = 3a 3.
.
C. V = 6a .
D. V =
2
2
Câu 99. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 220 triệu.
C. 210 triệu.
D. 216 triệu.
[ = 60◦ , S O
Câu 100. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng
√
√
a 57
a 57
2a 57
.
C.
.
D.
.
B.
A. a 57.
19
19
17
Câu 101. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≥ 3.
C. m ≤ 3.
D. −3 ≤ m ≤ 3.
Câu 102. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 12.
D. 8.
d = 60◦ . Đường chéo
Câu 103. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
3
3
√
a
6
4a
6
2a3 6
A.
.
B. a3 6.
C.
.
D.
.
3
3
3
Câu 104. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. a 6.
.
C. 2a 6.
B.
D. a 3.
2
9t
Câu 105. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 0.
C. Vô số.
D. 1.
0
0
C. 30.
0
Câu 106. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
Câu 107. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Trang 8/10 Mã đề 1
Câu 108. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 109. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
B. f 0 (0) = 10.
C. f 0 (0) = 1.
A. f 0 (0) =
ln 10
D. f 0 (0) = ln 10.
Câu 110. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 12.
C. 6.
D. 10.
x−2 x−1
x
x+1
Câu 111. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−∞; −3).
D. (−3; +∞).
Câu 112. Biểu thức nào sau đây khơng có nghĩa
A. (−1)−1 .
B. 0−1 .
√
C. (− 2)0 .
D.
√
−1.
−3
Câu 113. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a
√
√ thể tích của khối chóp 3S√
3
a 15
a3 15
a3
a 5
.
B.
.
C.
.
D.
.
A.
25
25
5
3
Câu 114. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m > − .
C. m ≤ 0.
D. m ≥ 0.
A. − < m < 0.
4
4
2x + 1
Câu 115. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. 1.
C. −1.
D. 2.
2
Câu 116. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = a.
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
x→a
x→a
D. lim+ f (x) = lim− f (x) = +∞.
Câu 117. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là
√ S H ⊥ (ABCD), S A =
√
3
3
2a 3
4a
2a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
√
Câu 118. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .
B. .
C. −3.
D. 3.
3
3
Z 3
x
a
a
Câu 119. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 4.
C. P = 16.
D. P = 28.
Câu 120. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 0.
C. 22016 .
D. e2016 .
Trang 9/10 Mã đề 1
Câu 121. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
.
C. 2.
D. 3.
A. 1.
B.
3
Câu 122. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.
C. 30.
D. 20.
Câu 123. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 16 tháng.
C. 15 tháng.
D. 17 tháng.
Câu 124. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 5}.
C. {5; 3}.
D. {4; 3}.
[ = 60◦ , S O
Câu 125. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng
√
a 57
2a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
17
19
19
2
3
7n − 2n + 1
Câu 126. Tính lim 3
3n + 2n2 + 1
7
2
B. 0.
C. 1.
D. .
A. - .
3
3
Câu 127. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 5.
C. 0, 3.
D. 0, 4.
Câu 128. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
B. 12.
C. 18.
D. 27.
A.
2
Câu 129. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 7%.
C. 0, 8%.
D. 0, 6%.
Câu 130.! Dãy số nào sau đây có !giới hạn là 0?
n
n
5
4
A. − .
B.
.
3
e
!n
5
C.
.
3
!n
1
D.
.
3
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
5.
10.
6. A
B
9.
C
8.
11.
B
12. A
13.
14. A
15.
16. A
17. A
18.
D
23.
D
C
C
B
D
C
B
B
33.
34.
C
35.
B
D
37.
D
38.
C
39. A
C
41.
C
43.
B
44.
B
31.
C
42.
B
29.
32.
40.
C
27. A
30. A
36.
B
25.
B
28.
D
21.
B
24.
26.
19.
C
20.
22.
D
4.
C
3.
C
45.
C
46.
B
47.
48.
B
49. A
50.
B
51.
52. A
D
B
D
D
53. A
54.
C
55. A
56.
C
57.
58. A
60.
C
B
59.
C
61.
C
62.
B
63.
D
64.
B
65.
D
66.
C
67.
B
68.
C
69.
B
1
70.
72.
74.
71.
B
B
75.
D
79.
80. A
B
84.
C
83.
C
B
C
B
B
C
91.
C
93.
C
D
95. A
96.
D
97.
98. A
D
89.
94.
100.
B
81.
87.
90.
D
85.
C
86. A
92.
B
77.
78.
88.
D
73.
C
76. A
82.
C
B
99. A
D
101.
B
102. A
103.
104. A
105. A
106. A
107. A
108. A
109.
110. A
111.
B
B
112.
B
113.
114.
B
115.
116. A
B
119.
120.
B
121.
124.
B
126. A
128.
130.
D
B
B
C
D
117.
118.
122.
B
C
123.
B
125.
B
127.
129.
C
D
2
C
B