Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 1 (883)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.35 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 4.
C. 5.
D. 2.
1
Câu 2. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
Câu 3. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; −8).
C. A(−4; 8).
D. A(4; 8).


Câu 4. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 3}.

C. {4; 3}.

Câu 5. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 3.

C. 4.

D. {5; 3}.
D. 5.

Câu 6. [1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m ≥ 3.
D. m > 3.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 7. Giá trị lớn nhất của hàm số y =
m−x
3
A. −2.
B. 0.
C. 1.

D. −5.
x

x

Câu 8. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 20.

C. 8.

D. 12.

Câu 9. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 12.

C. 8.

D. 20.

Câu 10. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
.
B.
.
C.

.
D.
.
A.
c+2
c+3
c+1
c+2
Câu 11. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.



5 13
A.
.
B. 2 13.
C. 2.
D. 26.
13
x−2 x−1
x
x+1
Câu 12. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1

x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−3; +∞).
C. (−∞; −3).
D. (−∞; −3].
Z 2
ln(x + 1)
Câu 13. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 1.
C. 0.
D. 3.
 π π
Câu 14. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 7.
D. 3.
Câu 15. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3

3

a 5
a 15
a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Trang 1/10 Mã đề 1


Câu 16. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).

C. D = R \ {0}.

D. D = R \ {1}.

Câu 17. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 4.
C. ln 10.

D. ln 14.
Câu 18.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.
Z
C.

xα dx =

xα+1
+ C, C là hằng số.
α+1

B.
Z
D.

0dx = C, C là hằng số.
1
dx = ln |x| + C, C là hằng số.
x

Câu 19. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. − < m < 0.

C. m ≥ 0.
D. m > − .
4
4
Câu 20. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối lập phương.
D. Khối 12 mặt đều.
Câu 21. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 32π.
C. 8π.
D. V = 4π.
Câu 22. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 23. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
B. m = ±3.
C. m = ± 3.
D. m = ±1.
A. m = ± 2.
Câu 24. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng





a 2
a 2
.
D.
.
A. a 2.
B. 2a 2.
C.
4
2

Câu 25. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.

3
2
6
6
Câu 26. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (2; 2).
C. (0; −2).
D. (−1; −7).
Câu 27. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n lần.
C. n2 lần.
D. n3 lần.
1
Câu 28. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 29. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y

Pmin của P = x√+ y.



9 11 + 19
9 11 − 19
18 11 − 29
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9
9
21
3
Câu 30. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối lập phương.
D. Khối bát diện đều.
Trang 2/10 Mã đề 1


mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
B. 67.
C. 26.

D. 34.

Câu 31. Tìm m để hàm số y =
A. 45.

Câu 32. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.

Câu 33. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 22.
C. 23.
D. 21.
Câu 34. Mệnh đề nào sau đây sai?

A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
f (x)dx = f (x).
C.
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
0
Câu 35. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
√ C đến đường thẳng BB bằng 2, khoảng
0
0
cách từ A đến các đường thẳng BB và CC lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
.
C. 2.
D. 3.
A. 1.
B.
3


Câu 36. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 8.

C. 12.

D. 6.


Câu 37. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √

3
3

a
3
a
3
a3
B.
.
C.
.
D.
.
A. a3 3.
12
3

4
Câu 38. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 0.
C. 3.

D. 2.

Câu 39. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 8.

C. 30.

D. 20.

Câu 40.! Dãy số nào sau đây có giới! hạn là 0?
n
n
4
5
A.
.
B. − .
e
3

!n
1
C.

.
3

!n
5
D.
.
3

Câu 41. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = e + .
C. T = 4 + .
D. T = e + 1.
e
e
Trang 3/10 Mã đề 1


x−3
Câu 42. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 1.

C. 0.


D. −∞.

Câu 43. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


a 38
3a 58
3a
3a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 44. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vuông
√ góc với đáy, S C = a3 3. Thể tích khối chóp S .ABCD là


3
3
a 3
a
a
3
A.
.
B.
.
C. a3 .
D.
.
9
3
3
Câu 45. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (I) sai.

C. Không có câu nào D. Câu (III) sai.
sai.
Câu 46. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.

C. 4 mặt.
D. 6 mặt.
Câu 47. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→a

x→b

x→b

Câu 48. [12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 = 20 là
A. Vô nghiệm.
B. 3.
C. 1.
x

x

x


D. 2.

3

x −1
Câu 49. Tính lim
x→1 x − 1
A. 3.
B. 0.

C. −∞.

D. +∞.

Câu 50. [1] Đạo hàm của hàm số y = 2 là
1
1
A. y0 = x
.
B. y0 = 2 x . ln 2.
C. y0 = 2 x . ln x.
D. y0 =
.
2 . ln x
ln 2
1
Câu 51. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.

B. (−∞; −2) ∪ (−1; +∞). C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.
x

Câu 52. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 12.

C. 6.

Câu 53. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Ba mặt.
C. Bốn mặt.

D. 10.
D. Hai mặt.

Câu 54. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vuông góc
với
đáy

S
C
=
a
3. Thể
√ tích khối chóp S .ABC
√là



3
3
3
a 3
2a 6
a 6
a3 3
A.
.
B.
.
C.
.
D.
.
2
9
12
4
Trang 4/10 Mã đề 1


Câu 55. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.

1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 56. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 1.
B. 2.
C. 7.
D. 4.
Câu 57. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.

C. 10.

D. 12.

d = 120◦ .
Câu 58. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
C. 4a.
D. 2a.
A. 3a.
B.
2
Câu 59. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e2 − 2; m = e−2 + 2.

C. M = e−2 − 2; m = 1.
D. M = e−2 + 2; m = 1.
Câu 60. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất


√ của hàm số. Khi đó tổng M + m
B. 16.
C. 8 3.
D. 8 2.
A. 7 3.
Câu 61. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là

4a3 3
a3
a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3
3

Câu 62. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
15
18
9
x
9
Câu 63. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. 1.
C. 2.
D. −1.
2

Câu 64. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.

√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
6
18
36
6
Câu 65. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Khơng có.
C. Có vơ số.
D. Có hai.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 66. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là




3
3
3

a
3
2
3
a
a
A. 2a2 2.
B.
.
C.
.
D.
.
12
24
24
Câu 67. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; −1) và (0; +∞). D. (−∞; 0) và (1; +∞).
1
Câu 68. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3

A. (1; +∞).
B. (−∞; 3).
C. (1; 3).
D. (−∞; 1) và (3; +∞).
Trang 5/10 Mã đề 1


Câu 69. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 70. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; 6, 5].

D. (4; +∞).

Câu 71. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
a
2a
8a
A.
.
B. .
C.

.
D.
.
9
9
9
9
Câu 72. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B. a 6.
.
D.
.
C.
A.
3
6
2
Câu 73. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 − i 3
−1 + i 3
A. P = 2i.

B. P =
.
C. P = 2.
D. P =
.
2
2
Câu 74. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
Câu 75. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 3, 55.
C. 15, 36.
D. 20.
Câu 76. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Cả ba đáp án trên.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 77. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 6.
C. 2.


D. −1.

x2
Câu 78. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 1.
C. M = e, m = 0.
D. M = , m = 0.
e
e
x x
0
Câu 79. [2] Cho hàm số f (x) = 2 .5 . Giá trị của f (0) bằng
1
.
C. f 0 (0) = 10.
D. f 0 (0) = ln 10.
A. f 0 (0) = 1.
B. f 0 (0) =
ln 10
Câu 80. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. log2 2020.
C. 2020.
D. log2 13.
Câu 81. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un

A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Trang 6/10 Mã đề 1


!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
= +∞.
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
Câu 82. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
B. 8 3.
C.
A. 6 3.
.

D.
.
3
3
!2x−1
!2−x
3
3


Câu 83. Tập các số x thỏa mãn
5
5
A. [3; +∞).
B. (+∞; −∞).
C. (−∞; 1].
D. [1; +∞).
Câu 84. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 10 năm.
C. 9 năm.
D. 8 năm.
2

2

Câu 85. [3-c]
và giá trị lớn nhất của hàm √

số f (x) = 2sin x + 2cos x lần lượt là
√ Giá trị nhỏ nhất √
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.
A. 2 và 2 2.
n−1
Câu 86. Tính lim 2
n +2
A. 1.
B. 3.
C. 2.
D. 0.
Câu 87.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
Z
C.
( f (x) − g(x))dx =

f (x)dx − g(x)dx.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 88. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y = x3 − 3x.
B. y =
.
C. y = x + .
2x + 1
x
Câu 89. [1] Tập
! xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
B. − ; +∞ .
C. −∞; .
A. −∞; − .
2
2
2

D. y = x4 − 2x + 1.
!
1
D.

; +∞ .
2

Câu 90. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 4.

Câu 91. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. 3.

D. 2.

C. Khối 20 mặt đều.

D. Khối bát diện đều.

Câu 92. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Trang 7/10 Mã đề 1



Câu 93. [1] Tính lim
A. 0.

1 − n2
bằng?
2n2 + 1
1
B. .
3

Câu 94. [1] Đạo hàm của làm số y = log x là
1
1
A.
.
B. y0 =
.
10 ln x
x ln 10

1
C. − .
2

D.

1
.

2

1
C. y0 = .
x

D. y0 =

ln 10
.
x

2

Câu 95. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
A. 3 .
B.
.
C. √ .
3
e
2e
2 e
Câu 96. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.

B. V = S h.
C. V = S h.
3
2
Câu 97. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {3; 3}.

log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 1.
C. 3.

1
.
e2

D.

D. V = 3S h.
D. {4; 3}.

Câu 98. [1-c] Giá trị biểu thức
A. −8.

D. 4.


Câu 99. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 100. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (−∞; 0) và (2; +∞). C. (0; 2).
Câu 101. [12215d] Tìm m để phương trình 4
3
9
B. 0 ≤ m ≤ .
A. 0 ≤ m ≤ .
4
4


x+ 1−x2



D. (0; +∞).

− 3m + 4 = 0 có nghiệm
3
C. 0 < m ≤ .
D. m ≥ 0.
4


− 4.2 x+

1−x2

Câu 102. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 2.
C. Vô số.
D. 3.
Câu 103. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 22.
C. y(−2) = 6.
D. y(−2) = −18.
Câu 104. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
(1, 01)3
A. m =
triệu.
B.
m
=
triệu.
(1, 01)3 − 1

(1, 12)3 − 1
100.(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
3
Câu 105.
định nào sau đây là sai?
!0
Z Các khẳng
A.
f (x)dx = f (x).
Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.

Z
B.
Z
D.

f (x)dx = F(x) + C ⇒

Z


f (t)dt = F(t) + C.

f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.
Trang 8/10 Mã đề 1


Câu 106. [1-c] Giá trị của biểu thức
A. 2.

log7 16
log7 15 − log7

B. 4.

15
30

bằng

D. −2.
!
3n + 2
2
Câu 107. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2

của S bằng
A. 5.
B. 2.
C. 4.
D. 3.
Câu 108. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 4.

C. −4.

C. 8.

D. 6.

Câu 109. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 20 triệu đồng.
4x + 1
bằng?
Câu 110. [1] Tính lim
x→−∞ x + 1
A. −1.
B. 2.

C. −4.
D. 4.
Câu 111. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. e2016 .
C. 22016 .
D. 1.
Câu 112. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 72.
C. 7, 2.

D. −7, 2.

Câu 113. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n3 lần.
D. 2n2 lần.
Câu 114. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
B. 2e + 1.
C. 2e.
A. .
e
Câu 115. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e

1 + 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4e + 2
Câu 116. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.

D. 3.
D. m =

1 + 2e
.
4 − 2e

D. 5 mặt.

2

Câu 117. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 135.

!
1
1
1
Câu 118. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
A. 1.

B. 2.

ln x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e

C. S = 24.

D. S = 32.

C. 0.

D.

Câu 119. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Hai mặt.

C. Bốn mặt.
!
1
1
1
Câu 120. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. .
C. 2.
2
2

3
.
2

D. Ba mặt.

D. +∞.
Trang 9/10 Mã đề 1


Câu 121. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 + 2 sin 2x.

C. 1 − sin 2x.

D. −1 + 2 sin 2x.

Câu 122. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
1

Câu 123. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = (−∞; 1).
C. D = R.

D. D = R \ {1}.

Câu 124. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.

x+3
Câu 125. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 3.
C. 1.
D. 2.
Câu 126. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
C.
.
D.

.
A. a3 .
B.
6
24
12
Câu 127. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
a 3
2a 3
.
B. a 3.
.
D.
.
A.
C.
3
2
2
Câu 128. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.

B. 25 m.
C. 27 m.
D. 387 m.
Câu 129. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

Câu 130. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 6.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

C. 108.

D. 36.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B


2.

3.

D

5.
7.

B

4.

C

D

6.

B

8.
D

C
B

10.


D

11. A

12.

D

13. A

14.

9.

15.

C

B

16. A

17.

D

18.

C


19.

D

20.

C

22. A

23. A

24.

D

25. A

26.

C

27.

D

28.

C


29.

D

31.

D

30.
32.

D
B

33.

34. A

35.

C
C

36.

B

37.

38.


B

39. A

40.

C

41. A

42.

C

43.

44.

B

46. A
48.
50.

C

B

B


45.

C

47.

C

49. A
51.

B

D

52.

C

53.

B

54.

C

55.


B

56.

C

57.

58.

B

59.

60.

B

61. A

63.

B

64.

65.

D


66.

C
B
C

68.

67. A
69.

D

70.

C
1

D
C


71.

D

72.

C
C


73.

C

74.

75.

C

76.

77.

B

78.

79.

D

80.

81.

D

82. A


83.

D

84.

85.

D

88.

B

C
D
B

C

B

94.

B

D

96. A


97.

D

98. A

99.

D
B

C

92.

95.

101.

D

90.

91. A
93.

C

86.


C

87.
89.

D

100.

B

102.

B

103.

D

104. A

105.

D

106.

C


107.

C

108.

D

109.

C

110.

D

111. A

112.

D

113. A

114.

D

115. A


116.

117.

D

119.

118. A

C

121.

120.
D

124.

C
D

126.

B

127. A
129.

C


122. A

123. A
125.

B

128.
B

130. A

2

C



×