Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 2 (51)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.76 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không rút
tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo.
Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban
đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 14 năm.
C. 11 năm.
D. 12 năm.
Câu 2. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 3. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp đôi.
D. Tăng gấp 8 lần.
1


Câu 4. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R.
C. D = (1; +∞).

D. D = R \ {1}.

Câu 5. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Bát diện đều.
C. Nhị thập diện đều.

D. Thập nhị diện đều.

Câu 6. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
x3 − 1
Câu 7. Tính lim
x→1 x − 1
A. −∞.
B. +∞.
C. 0.
D. 3.
1 − 2n
Câu 8. [1] Tính lim
bằng?
3n + 1

2
2
1
A. − .
B. 1.
C. .
D. .
3
3
3
0 0 0
Câu 9. [3-1122h] Cho hình lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc của
0
A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và BC
a 3
. Khi đó thể tích khối lăng trụ là

4 √



a3 3
a3 3
a3 3
a3 3
A.
.
B.
.

C.
.
D.
.
12
6
24
36
1
Câu 10. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Z 2
ln(x + 1)
Câu 11. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. 1.
C. 3.
D. −3.

Câu 12. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a =
.
C. log2 a = loga 2.
D. log2 a =
.
loga 2
log2 a
Trang 1/11 Mã đề 1


Câu 13. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

Câu 14. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 15. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|




12 17
.
B. 5.
A.
C. 68.
D. 34.
17
log 2x
Câu 16. [3-1229d] Đạo hàm của hàm số y =

x2
1
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
0
0
A. y0 = 3
.
B. y0 =
.
C.
y
=
.
D.
y
=
.

2x ln 10
2x3 ln 10
x3 ln 10
x3
Câu 17. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).
C. (−∞; 0) và (2; +∞). D. (0; 2).
Câu 18. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. −4.
C. 4.

D. 2.

Câu 19. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối tứ diện đều.
1
Câu 20. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
Câu 21. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng



√ góc với đáy, S C = a3 3. Thể tích khối chóp S 3.ABCD
3
a
a 3
a 3
.
B.
.
C.
.
D. a3 .
A.
3
3
9
Câu 22. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. 2n3 lần.
D. n3 lần.
2n + 1
Câu 23. Tìm giới hạn lim
n+1
A. 3.
B. 2.
C. 1.
D. 0.
Câu 24. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh

A, B, C, M,

√ N, P bằng


14 3
20 3
.
B. 6 3.
C. 8 3.
D.
.
A.
3
3
Câu 25. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. m ≥ 0.
C. m > − .
D. − < m < 0.
4
4
Câu 26. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.

D. Năm tứ diện đều.
Trang 2/11 Mã đề 1


Câu 27.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
3
A.
.
B.
.
C.
.
D. .
4
12
2
4
Câu 28. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 24.
D. 23.
d = 300 .

Câu 29. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho.


3

a
3a3 3
3
D. V =
A. V =
.
B. V = 6a3 .
C. V = 3a3 3.
.
2
2
Câu 30. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
C. 3.
D. 2e.
A. 2e + 1.
B. .
e
1
Câu 31. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −2.

C. −1.
D. 2.
Câu 32. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4 − 2e
4e + 2
Câu 33. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −3.
C. −7.
!
1
1
1
+ ··· +
Câu 34. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. .

B. .
C. +∞.
2
2
Câu 35. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 6.
C. 1.

D. m =

1 + 2e
.
4e + 2

D. Khơng tồn tại.

D. 2.
D. −1.

Câu 36. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 6
a3 2
a3 3

a 3
A.
.
B.
.
C.
.
D.
.
24
48
16
48
Câu 37. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {5; 3}.
C. {4; 3}.
D. {3; 4}.
Câu 38. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 2.
C. 0, 4.
D. 0, 5.
Câu 39. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {3; 3}.

D. {4; 3}.


Câu 40. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 18 lần.
Câu 41.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Trang 3/11 Mã đề 1



Câu 42. Phần thực√và phần ảo của số √
phức z =
A. Phần thực là √2, phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là − 3.




2 − 1 − 3i lần lượt l √

B. Phần thực là 1√− 2, phần ảo là −√ 3.
D. Phần thực là 2 − 1, phần ảo là 3.

2n − 3
Câu 43. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. 0.
C. 1.
D. −∞.
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 44. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 2.
B. .

C. −1.
D. 1.
2
un
Câu 45. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. −∞.
C. 0.
D. 1.
Câu 46. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 2.

C. 3.

D. 5.

Câu 47. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 10.

C. 8.

D. 6.

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x +

√ y.



18 11 − 29
2 11 − 3
9 11 + 19
9 11 − 19
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
21
3
9
9
x−2 x−1
x
x+1
Câu 49. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm

phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−∞; −3).
D. (−3; +∞).
4x + 1
bằng?
Câu 50. [1] Tính lim
x→−∞ x + 1
A. 4.
B. −4.
C. 2.
D. −1.
Câu 48. [12210d] Xét các số thực dương x, y thỏa mãn log3

Câu 51. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B. a 3.
C.
.
D. a 2.
2
3


Câu 52. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
A. V = a3 2.
.
D. 2a3 2.
B. V = 2a3 .
C.
3

Câu 53. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A.
;3 .
B. [3; 4).
C. (1; 2).
D. 2; .
2
2
Câu 54. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −12.

C. −9.
D. −15.
Câu 55. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 6, 12, 24.
B. 2 3, 4 3, 38.
C. 2, 4, 8.
D. 8, 16, 32.
Trang 4/11 Mã đề 1


Câu 56. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B

√ C là
3
a3 3
a3
a 3
.
B.
.
C. a3 .
D.
.
A.
2
6

3
cos n + sin n
Câu 57. Tính lim
n2 + 1
A. −∞.
B. 1.
C. 0.
D. +∞.
tan x + m
Câu 58. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (−∞; 0] ∪ (1; +∞).
Câu 59. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = −21.
C. P = 21.
D. P = 10.
Câu 60. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (1; 2).
C. (−∞; +∞).

D. [−1; 2).


Câu 61. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = −18.
12 + 22 + · · · + n2
Câu 62. [3-1133d] Tính lim
n3
2
1
A. .
B. .
C. +∞.
D. 0.
3
3
0 0 0 0
0
Câu 63.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.

C.
.
D.
.
2
2
3
7
Câu 64. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 0, 8.
C. 7, 2.
D. 72.
Câu 65. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
6

12
4
a
1
Câu 66. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 7.
C. 1.
D. 4.
Câu 67. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.

C. 12 cạnh.

D. 11 cạnh.

Câu 68. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 6 mặt.
C. 9 mặt.
D. 8 mặt.
1
Câu 69. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1

A. xy0 = −ey − 1.
B. xy0 = ey + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 70. Khối lập phương thuộc loại
A. {3; 3}.
B. {4; 3}.
Câu 71. Tính lim
A. 1.

1
1
1
+
+ ··· +
1.2 2.3
n(n + 1)
B. 0.

C. {3; 4}.

D. {5; 3}.

!

C.

3
.
2


D. 2.
Trang 5/11 Mã đề 1


Câu 72. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 1.
C. 4 − 2 ln 2.

D. −2 + 2 ln 2.

Câu 73. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 2020.
C. log2 13.
D. 13.
Câu 74. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
9

6
18

Câu 75. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
3
πa3 6
πa3 3
πa3 3
πa 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
6
2
3
Câu 76. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.

B. 12.
C.
.
D. 18.
2
Câu 77. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 9 mặt.
D. 6 mặt.
8
Câu 78. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 64.
C. 96.
D. 82.
Câu 79. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 18 tháng.
D. 16 tháng.
x−2
Câu 80. Tính lim
x→+∞ x + 3
2
A. − .

B. 1.
C. 2.
D. −3.
3
Câu 81. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 46cm3 .
C. 27cm3 .
D. 72cm3 .
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 82. [3-1214d] Cho hàm số y =
x+2
tam giác đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
√ có độ dài bằng

A. 2.
B. 6.
C. 2 2.
D. 2 3.
Câu 83. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3
a3 3
a3 3
a3 3
A.
.

B.
.
C.
.
D.
.
4
4
12
8
Câu 84. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−1; 3].
C. (−∞; −3].
D. [−3; 1].
Câu 85. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {1}.

C. D = R \ {0}.

D. D = (0; +∞).
Trang 6/11 Mã đề 1


Câu 86. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n2 lần.
C. n lần.

D. 3n3 lần.
Câu 87. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 88. Tính lim
x→2

A. 1.

x+2
bằng?
x

B. 2.

C. 0.
D. 3.
x−3 x−2 x−1
x
Câu 89. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2].
C. (2; +∞).
D. (−∞; 2).
Câu 90. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 16π.
C. 32π.
D. V = 4π.
p
1
ln x
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:

Câu 91. Gọi F(x) là một nguyên hàm của hàm y =
x
3
8
8
1
1
A. .
B. .
C. .
D. .
3
9
9
3
x+1
Câu 92. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
6
3
2
2

Câu 93. Giá trị của lim (3x − 2x + 1)
x→1

A. 3.

B. 2.

C. 1.

D. +∞.

Câu 94. [2] Cho hàm số f (x) = ln(x + 1). Giá trị f (1) bằng
1
ln 2
A. .
B.
.
C. 1.
D. 2.
2
2
Câu 95. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Khơng có.
C. Có một hoặc hai.
D. Có hai.
4

0


Câu 96. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 160 cm2 .
5
Câu 97. Tính lim
n+3
A. 1.
B. 2.
C. 3.
D. 0.


Câu 98.
√ Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6 − x

A. 3 2.
B. 2 3.
C. 3.
D. 2 + 3.
Câu 99. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. 2.

D. Vô nghiệm.
Trang 7/11 Mã đề 1



Câu 100. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 − sin 2x.
C. −1 + 2 sin 2x.
D.
x+1
bằng
Câu 101. Tính lim
x→+∞ 4x + 3
1
A. .
B. 1.
C. 3.
D.
3
1
Câu 102. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; 3).
C. (1; +∞).
D.

1 + 2 sin 2x.

1
.
4


(−∞; 3).

Câu 103. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 104. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; −1).
C. (−∞; 1).

D. (1; +∞).

x
Câu 105. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
1
3
A. .
B. .
C.
.
D. 1.
2
2
2
log(mx)
Câu 106. [1226d] Tìm tham số thực m để phương trình

= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m < 0 ∨ m > 4.

Câu 107. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
c+3
c+1
c+2

D.

3b + 3ac
.
c+2

Câu 108. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.

C. Phần thực là −1, phần ảo là 4.
D. Phần thực là −1, phần ảo là −4.
Câu 109. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 110. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 111. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d nằm trên P hoặc d ⊥ P.
D. d ⊥ P.
√3
4
Câu 112. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5
2
7
A. a 8 .

B. a 3 .
C. a 3 .
D. a 3 .
Trang 8/11 Mã đề 1


Câu 113. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 3.

1
3|x−1|

= 3m − 2 có nghiệm duy

C. 2.

D. 1.

Câu 114. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 2

a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
6
36
18
Câu 115. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là
√ S H ⊥ (ABCD), S A =

3
3
4a 3
2a
4a3
2a3 3
A.
.
B.
.
C.

.
D.
.
3
3
3
3
Câu 116. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Một mặt.
C. Ba mặt.
D. Hai mặt.
Câu 117. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 12.
C. ln 4.
D. ln 14.
Câu 118. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
A. aαβ = (aα )β .

B. aα+β = aα .aβ .

C. aα bα = (ab)α .

D.

α

= aβ .
β

a


Câu 119. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3
3
3

a
3
a 3
a
.
B. a3 3.
.
D.
.
A.
C.
3
4
12
Câu 120. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a


x→b

x→a

x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim− f (x) = f (b).

[ = 60◦ , S O
Câu 121. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng

√ với mặt đáy và S O = a. Khoảng cách từ O đến (S

a 57
a 57
2a 57
.

B. a 57.
C.
.
D.
.
A.
19
17
19
Câu 122. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
2a 6
a 3
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
9
4

12
2
3
2
Câu 123. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2 √

A. 3 − 4 2.
B. −3 − 4 2.
C. 3 + 4 2.
D. −3 + 4 2.
Câu 124. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. e2016 .
C. 1.
D. 0.

Câu 125. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vô số.
C. 63.
D. 62.
Câu 126. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
Trang 9/11 Mã đề 1


A.

B.
C.
D.

F(x) = G(x) trên khoảng (a; b).
Cả ba câu trên đều sai.
F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.

Câu 127. Dãy!số nào có giới hạn bằng 0?
n
−2
n3 − 3n
.
B. un =
.
A. un =
3
n+1

C. un = n − 4n.

!n
6
D. un =
.
5

C. −1.


D. 1.

2

x2 − 5x + 6
Câu 128. Tính giới hạn lim
x→2
x−2
A. 0.
B. 5.

π
Câu 129. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 3 3 + 1.
C. T = 2.
D. T = 4.
Câu 130. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = (−2; 1).
C. D = [2; 1].
2

D. D = R \ {1; 2}.


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2. A

3.

D

4.

5.

D

6.

7.

D


8. A

9. A

C
B

10.
D

11.
13.

12.

C
B
D

14.

C

15. A

C

16.

17.


18. A

C

19.

D

20.

D
D

21.

B

22.

23.

B

24.

B

26.


B

C

25.
27. A

28. A

29. A

30.

C

32.

C

31.

B

33.
35.

D
B

34.


D

36.

D

37. A

38. A

39. A

40. A

41.
43.

D

47.

D

48.
52.

53. A

54.


55. A

56. A
C

58.

61.

D

62.

B
B
C
B

64. A

C

65. A
67.

D

60.


B

63.

B

50. A

B

51. A

59.

D

46. A

C

57.

C

44.

B

45.
49.


42.

66.
B

68.
1

B
C


69.

D

70.
72. A

71. A
76.

D

78. A

79.

D


80.

81.

C
D

83.

D

75.

C

73.

85. A

B

82.

D

84.

D


86. A
C

87.
89. A
92.

B

B

88.

B

91.

B

93.

B

94.

D

95.

96.


D

97.
99.

98. A

C
D
B

101.

D

102. A

103.

D

104. A

105.

D

107.


D

100.

106.

C

B

108. A
110.
112.

D
D

111.

C

115.
117.

116. A
118.

D

C

D

121. A
C

123.

D
D

124.

D

125.

126.

D

127. A

128.

D

119. A

120. A
122.


C

113.

C

114.

109.

129.

C

130. A

2

D



×