Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
n
C. lim q = 1 với |q| > 1.
Câu 2. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 4.
1
= 0 với k > 1.
nk
D. lim un = c (Với un = c là hằng số).
B. lim
C. 6.
D. 10.
Câu 3. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d ⊥ P.
C. d nằm trên P hoặc d ⊥ P.
D. d nằm trên P.
Câu 4. [1] Đạo hàm của hàm số y = 2 x là
1
.
B. y0 = 2 x . ln x.
A. y0 = x
2 . ln x
C. y0 = 2 x . ln 2.
D. y0 =
1
.
ln 2
Câu 5. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tứ giác.
Câu 6. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 1.
C. e2016 .
D. 0.
Câu 7. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 8. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2].
C. (−∞; 2).
D. [2; +∞).
Câu 9. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = ln x − 1.
C. y0 = 1 − ln x.
D. y0 = x + ln x.
Câu 10. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 7 năm.
C. 10 năm.
D. 8 năm.
Câu 11. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. (−1) .
B. (− 2) .
C. 0−1 .
D.
√
−1.
−3
Câu 12. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−∞; −1).
C. (−1; 1).
D. (1; +∞).
Câu 13.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
3
3
3
A.
.
B.
.
C. .
2
4
4
√
3
D.
.
12
Trang 1/11 Mã đề 1
Câu 14. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a 3
a
a
B.
.
C. .
D. a.
A. .
3
2
2
Câu 15. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
tan x + m
Câu 16. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (1; +∞).
B. (−∞; 0] ∪ (1; +∞). C. [0; +∞).
D. (−∞; −1) ∪ (1; +∞).
Câu 17. Hàm số nào sau đây khơng có cực trị
1
B. y = x4 − 2x + 1.
A. y = x + .
x
C. y = x3 − 3x.
D. y =
x−2
.
2x + 1
d = 300 .
Câu 18. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho.
√
√
√
a3 3
3a3 3
3
3
A. V =
.
B. V = 6a .
C. V = 3a 3.
.
D. V =
2
2
Câu 19. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng
√
√
√
abc b2 + c2
b a2 + c2
c a2 + b2
a b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 20. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 4.
C. 8.
D. 6.
Câu 21. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 1134 m.
C. 2400 m.
D. 6510 m.
Câu 22. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 23. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 1.
B. 5.
C. 3.
D. 2.
2−n
Câu 24. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. −1.
C. 2.
D. 0.
Câu 25. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 20.
C. 15, 36.
D. 24.
Câu 26.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.
A.
Z
C.
0dx = C, C là hằng số.
B.
Z
D.
xα dx =
xα+1
+ C, C là hằng số.
α+1
1
dx = ln |x| + C, C là hằng số.
x
Câu 27.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Trang 2/11 Mã đề 1
Z
C.
f (x)g(x)dx =
Z
Z
f (x)dx
Z
g(x)dx.
D.
( f (x) − g(x))dx =
Z
Z
f (x)dx −
g(x)dx.
Câu 28. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
3
6
2
2
x −9
Câu 29. Tính lim
x→3 x − 3
A. −3.
B. 3.
C. +∞.
D. 6.
Câu 30. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
4x + 1
Câu 31. [1] Tính lim
bằng?
x→−∞ x + 1
A. −1.
B. 4.
C. 2.
D. −4.
Câu 32. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 15
a3
a3 15
a3 5
.
B.
.
C.
.
D.
.
A.
25
25
3
5
Câu 33. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {3; 3}.
D. {5; 3}.
Câu 34. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = 0.
C. m = −2.
D. m = −1.
Câu 35. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
A.
.
B. 2a 2.
.
D. a 2.
C.
2
4
Câu 36. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 37. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 38. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A
đến (S AB) bằng
√
√
√
a 6
A. a 6.
B.
.
C. 2a 6.
2
5
Câu 39. Tính lim
n+3
A. 2.
B. 0.
C. 1.
√3
4
Câu 40. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
5
5
A. a 3 .
B. a 8 .
C. a 3 .
= a. Khoảng cách từ điểm O
√
D. a 3.
D. 3.
7
D. a 3 .
Trang 3/11 Mã đề 1
Câu 41. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
1
Câu 42. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −1.
C. 1.
D. −2.
Câu 43. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
n−1
Câu 44. Tính lim 2
n +2
A. 2.
B. 0.
C. 1.
D. 3.
Câu 45. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 30.
C. 20.
D. 12.
Câu 46. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 9 mặt.
Câu 47. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3
3
2a 3
a3
a3
4a 3
.
B.
.
C.
.
D.
.
A.
3
3
6
3
Câu 48. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 8.
C. 30.
D. 12.
Câu 49. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 1.
C. −1.
Câu 50. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.
B. 1.
x+1
bằng
x→+∞ 4x + 3
1
B. .
4
!
1
1
1
Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
B. .
2
√
√
4n2 + 1 − n + 2
Tính lim
bằng
2n − 3
B. +∞.
D. 6.
1
3|x−1|
= 3m − 2 có nghiệm duy
C. 3.
D. 4.
C. 1.
D.
C. 1.
D. 2.
C. 1.
D.
Câu 51. Tính lim
A. 3.
Câu 52.
A. 0.
Câu 53.
A. 2.
Câu 54. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2
√
A. −3 + 4 2.
B. 3 − 4 2.
C. −3 − 4 2.
1
.
3
3
.
2
√
D. 3 + 4 2.
Trang 4/11 Mã đề 1
Câu 55. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = e + 1.
C. T = 4 + .
D. T = e + 3.
e
e
Câu 56. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
C. V = 3S h.
A. V = S h.
B. V = S h.
3
1
D. V = S h.
2
Câu 57. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối 12 mặt đều.
D. Khối tứ diện đều.
C. 1.
D.
2x + 1
x→+∞ x + 1
B. 2.
Câu 58. Tính giới hạn lim
A. −1.
1
.
2
Câu 59. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là
√
√ với đáy và S C = a 3.3 √
3
a 3
2a3 6
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
2
4
9
12
Câu 60. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
Câu 61. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 1.
B. 2.
C. .
D.
.
2
2
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 62. Giá trị lớn nhất của hàm số y =
m−x
3
A. 1.
B. 0.
C. −5.
D. −2.
log 2x
Câu 63. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
1
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
x ln 10
x
2x ln 10
Câu 64. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là 4.
Z 3
x
a
a
Câu 65. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = −2.
C. P = 4.
D. P = 28.
Câu 66. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − 2 .
B. − .
C. −e.
e
e
D. −
1
.
2e
Câu 67. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục thực.
Trang 5/11 Mã đề 1
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
2a
a 2
a
B. .
C.
.
D.
.
A. .
3
4
3
3
Câu 69. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 70, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 20, 128 triệu đồng.
2n + 1
Câu 70. Tính giới hạn lim
3n + 2
1
3
2
B. .
C. 0.
D. .
A. .
3
2
2
Câu 71. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 6.
C. 8.
D. 10.
Câu 68. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Câu 72. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R.
C. D = (0; +∞).
D. D = R \ {0}.
Câu 73. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 22 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 20 triệu đồng.
d = 120◦ .
Câu 74. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 2a.
C. 3a.
D.
.
2
Câu 75. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).
B. Cả ba mệnh đề.
C. (I) và (III).
D. (I) và (II).
Câu 76. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
D.
.
c+2
c+2
c+3
c+1
Câu 77. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 8, 16, 32.
B. 2, 4, 8.
C. 6, 12, 24.
D. 2 3, 4 3, 38.
x3 − 1
Câu 78. Tính lim
x→1 x − 1
A. 0.
B. −∞.
C. 3.
D. +∞.
Câu 79. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
D. Khối tứ diện đều.
Trang 6/11 Mã đề 1
Câu 80. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
A. − .
B. 2.
C. −2.
2
Câu 81. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 3.
C. 4.
D.
1
.
2
D. 5.
Câu 82. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. m ≤ 3.
C. −3 ≤ m ≤ 3.
D. −2 ≤ m ≤ 2.
Câu 83. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 84. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. (−∞; −3].
C. [−3; 1].
D. [−1; 3].
mx − 4
Câu 85. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 26.
C. 34.
D. 67.
[ = 60◦ , S O
Câu 86. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng
√
√
2a 57
a 57
a 57
B.
.
C.
.
D.
.
A. a 57.
19
17
19
Câu 87. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Bốn cạnh.
C. Hai cạnh.
D. Năm cạnh.
Câu 88. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 20.
C. 30.
D. 12.
Câu 89. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 387 m.
C. 25 m.
D. 1587 m.
Câu 90. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
8a
a
5a
A.
.
B.
.
C. .
D.
.
9
9
9
9
Câu 91. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (−∞; 0) và (2; +∞). C. (0; 2).
D. (0; +∞).
Câu 92. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = +∞.
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
Câu 93. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
x→a
x→a
x→a
x→a
D. lim+ f (x) = lim− f (x) = a.
D. Khối 20 mặt đều.
Z 1
6
2
3
. Tính
f (x)dx.
Câu 94. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. 6.
B. 4.
C. Khối bát diện đều.
C. 2.
D. −1.
Trang 7/11 Mã đề 1
Câu 95. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 − 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 96. Tứ diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 3}.
Câu 97. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 0.
C. m > −1.
D. m > 1.
2
Câu 98. Tính
√4 mô đun của số phức z biết (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.
D. |z| =
√
5.
Câu 99. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 4.
C. 0, 5.
D. 0, 3.
!
1
1
1
Câu 100. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. +∞.
C. .
D. 2.
2
2
1 − 2n
bằng?
Câu 101. [1] Tính lim
3n + 1
2
2
1
A. − .
B. 1.
C. .
D. .
3
3
3
Câu 102. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 103. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
B. 2.
C. 4.
D. 3.
Câu 104. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
8
4
4
Câu 105. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 15 tháng.
C. 17 tháng.
D. 16 tháng.
Câu 106. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Trang 8/11 Mã đề 1
Câu 107. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√
√ phẳng vng góc với 3(ABCD).
√ S .ABCD là
3
3
√
a 3
a 2
a 3
B.
.
C.
.
D.
.
A. a3 3.
4
2
2
Câu 108. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 5}.
D. {3; 4}.
Câu 109. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện
√tích là
2
2
2
2
11a
a 5
a 2
a 7
A.
.
B.
.
C.
.
D.
.
32
16
4
8
√
√
Câu 110. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
B. 0 ≤ m ≤ .
C. 0 < m ≤ .
D. m ≥ 0.
A. 0 ≤ m ≤ .
4
4
4
Câu 111. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. 3.
D. Vơ nghiệm.
2
2
Câu 112. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x) − g(x)] = a − b.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
Câu 113. [2] Cho hàm số y = ln(2x + 1). Tìm m để y (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4 − 2e
4e + 2
0
D. m =
1 + 2e
.
4e + 2
√
Câu 114. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
2
6
6
Câu 115. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
A. 2
.
C. √
.
D. √
.
.
B. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 116. [3-1132d] Cho dãy số (un ) với un =
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. Dãy số un khơng có giới hạn khi n → +∞.
A. lim un = 1.
1
C. lim un = .
D. lim un = 0.
2
Câu 117. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
8
48
x2
Câu 118. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = , m = 0.
C. M = e, m = .
D. M = e, m = 1.
e
e
Câu 119. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≥ .
D. m ≤ .
4
4
4
4
Trang 9/11 Mã đề 1
Câu 120. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
1
B. y0 =
.
C.
.
D. y0 =
.
A. y0 = .
x
x
10 ln x
x ln 10
!
!
!
4x
1
2
2016
Câu 121. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
C. T = 1008.
D. T = 2017.
A. T = 2016.
B. T =
2017
√
√
Câu 122. Phần thực
và
phần
ảo
của
số
phức
z
=
2
−
1
−
3i lần lượt√l
√
√
√
A. Phần thực là √2 − 1, phần ảo là √3.
B. Phần thực là 2 −√1, phần ảo là − √3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 123. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 21.
C. P = −10.
D. P = 10.
p
ln x
1
Câu 124. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
A. .
B. .
C. .
D. .
9
3
9
3
Câu 125. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.424.000.
D. 102.423.000.
√
x2 + 3x + 5
Câu 126. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 1.
B. 0.
C. − .
D. .
4
4
π π
3
Câu 127. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. 7.
D. −1.
√
√
x
+
3
+
Câu 128. Tìm giá trị lớn nhất của hàm
số
y
=
√6 − x
√
√
A. 3.
B. 2 + 3.
C. 3 2.
D. 2 3.
1
Câu 129. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
2
2
sin x
Câu 130.
+ 2cos x√lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá
√ trị lớn nhất của hàm số f (x) = 2
A. 2 2 và 3.
B. 2 và 2 2.
C. 2 và 3.
D. 2 và 3.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
2.
C
3.
C
4.
C
5. A
C
7.
9. A
D
8.
D
10. A
C
11.
13.
6.
14.
B
15.
C
12.
D
16. A
C
17.
D
18.
D
19.
D
20.
D
21.
D
22.
D
23.
D
24.
B
25.
C
26.
B
27.
C
28.
B
30.
B
32.
B
29.
31.
D
B
33.
D
35. A
34.
C
36.
C
37.
B
38. A
39.
B
40. A
41.
43.
42.
C
B
44.
45.
C
47. A
48.
C
49.
50.
B
52.
51.
D
B
D
B
53.
C
C
D
55.
54. A
56.
B
57.
58.
B
59.
60.
B
61.
B
62.
B
63.
B
64.
C
66.
68.
B
D
65.
D
67.
69.
C
1
C
B
D
70. A
72.
B
74.
76.
71.
B
73.
B
75.
D
77.
B
78.
C
79.
80.
C
81.
82.
C
83.
84.
C
85.
86.
B
D
B
91.
B
D
100.
D
C
B
D
95.
C
97.
C
B
106. A
108.
C
B
103.
D
105.
D
107.
D
109.
D
111. A
112. A
113.
114. A
115.
116.
D
101. A
102. A
C
C
D
117. A
119.
118. A
120.
122.
B
99.
98. A
110.
C
93.
96.
104.
B
89. A
92. A
94.
C
87. A
88.
90.
D
D
121.
D
C
123. A
B
124. A
125.
126.
C
127. A
128.
C
129.
130. A
2
C
D