Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 + n + 1
n2 − 3n
A. un =
.
B.
u
=
.
C.
u
=
.
n
n
5n + n2
(n + 1)2
n2
Câu 2. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Ba mặt.
C. Bốn mặt.
D. un =
n2 − 2
.
5n − 3n2
D. Hai mặt.
un
Câu 3. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. 0.
C. +∞.
D. −∞.
Câu 4. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
9
6
15
2
2
0
Câu 5. Cho f (x) = sin x − cos x − x. Khi đó f (x) bằng
A. −1 + 2 sin 2x.
B. 1 − sin 2x.
C. 1 + 2 sin 2x.
D. −1 + sin x cos x.
Câu 6. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của khối
chóp A.GBC
A. V = 5.
B. V = 4.
C. V = 3.
D. V = 6.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 7. Cho
x2
1
A. −3.
B. 3.
C. 1.
D. 0.
Câu 8. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
Câu 9. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.
B. 1.
C. 2.
D. 3.
Câu 10. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√
√ N, P bằng
√
√
14 3
20 3
.
B.
.
C. 6 3.
D. 8 3.
A.
3
3
Câu 11. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
x−2 x−1
x
x+1
Câu 12. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. [−3; +∞).
C. (−∞; −3].
D. (−∞; −3).
Trang 1/10 Mã đề 1
Câu 13. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 1.
B. 2.
C. 5.
D. 3.
Câu 14. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vuông
√ góc với đáy, S C = a3 3. Thể tích khối chóp S .ABCD là
√
3
3
3
a 3
a
a
A.
.
B.
.
C. a3 .
D.
.
9
3
3
Câu 15. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 4 mặt.
C. 3 mặt.
Câu 16. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. e.
C. −2 + 2 ln 2.
cos n + sin n
Câu 17. Tính lim
n2 + 1
A. 0.
B. 1.
C. +∞.
D. 6 mặt.
D. 4 − 2 ln 2.
D. −∞.
Câu 18. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
.
B. 2
.
C. √
.
D. √
.
A. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 19. Cho I =
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = −2.
C. P = 28.
D. P = 4.
log 2x
Câu 20. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1 − 4 ln 2x
1
1 − 2 ln 2x
.
B. y0 =
.
D. y0 =
.
A. y0 = 3
.
C. y0 = 3
3
2x ln 10
x
x ln 10
2x3 ln 10
2
Câu 21. Tính
√4 mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
√
D. |z| = 2 5.
Câu 22. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 23. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 24. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục ảo.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
Câu 25.
f (x), g(x) liên
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Z
Z
Z
Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Trang 2/10 Mã đề 1
Câu 26. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. .
B. 25.
C. 5.
5
√
D. 5.
Câu 27. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 27 m.
C. 1587 m.
D. 387 m.
Câu 28.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
B. 1.
C. 2.
D. 2.
A. 10.
log7 16
Câu 29. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −2.
B. 4.
C. 2.
D. −4.
Câu 30. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 1.
C. 2.
D. 3.
Câu 31. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = 22.
D. y(−2) = −18.
Câu 32. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 6.
C. 8.
D. 12.
Câu 33. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 12 năm.
D. 14 năm.
Câu 34. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m ≥ 0.
C. m > −1.
D. m > 1.
d = 30◦ , biết S BC là tam giác đều
Câu 35. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
13
16
26
√
Câu 36. Thể tích của khối lập phương
có
cạnh
bằng
a
2
√
3
√
√
2a 2
A. 2a3 2.
B.
.
C. V = a3 2.
D. V = 2a3 .
3
Câu 37. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. 2a 6.
B. a 3.
C.
.
D. a 6.
2
Câu 38. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 72.
C. −7, 2.
D. 7, 2.
Câu 39. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d ⊥ P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.
Trang 3/10 Mã đề 1
Câu 40. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
B.
.
A. .
n
n
C.
sin n
.
n
1
D. √ .
n
Câu 41. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.
B. 3.
1
3|x−1|
C. 1.
= 3m − 2 có nghiệm duy
D. 4.
Câu 42. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 16π.
C. 32π.
D. 8π.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 43. Tìm m để hàm số y =
x+m
A. 45.
B. 26.
C. 34.
D. 67.
Câu 44. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
B. 2 13.
C.
.
D. 2.
A. 26.
13
Câu 45. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có vơ số.
C. Có hai.
D. Có một.
log 2x
là
x2
1 − 2 log 2x
1
1 − 4 ln 2x
1 − 2 ln 2x
.
B. y0 =
.
D. y0 = 3
.
.
C. y0 =
A. y0 = 3
3
3
x ln 10
x
2x ln 10
2x ln 10
x−3 x−2 x−1
x
Câu 47. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2).
C. (2; +∞).
D. (−∞; 2].
Câu 46. [3-1229d] Đạo hàm của hàm số y =
Câu 48. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vô nghiệm.
C. 3.
Câu 49. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln x.
B. y0 =
.
ln 2
C. y0 =
√
Câu 50.
Xác
định
phần
ảo
của
số
phức
z
=
(
2 + 3i)2
√
√
A. 6 2.
B. −6 2.
C. 7.
Câu 51. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 20.
C. 30.
1
2 x . ln
x
.
D. 2.
D. y0 = 2 x . ln 2.
D. −7.
D. 8.
√
Câu 52. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
6
2
3
Câu 53. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
9
13
A. −
.
B. − .
C.
.
D.
.
100
16
25
100
Trang 4/10 Mã đề 1
Câu 54. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a =
.
C. log2 a = loga 2.
D. log2 a = − loga 2.
loga 2
log2 a
Câu 55. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối lăng trụ tam giác.
C. Khối tứ diện.
D. Khối bát diện đều.
Câu 56. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.
C. 6.
D. 4.
Câu 57. Tìm giá trị của tham số m để hàm số y = −x + 3mx + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [1; +∞).
C. [−1; 3].
D. (−∞; −3].
3
2
3
Câu 58. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e5 .
π
x
Câu 59. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2
√
√
2 π4
3 π6
A.
e .
B. 1.
C.
e .
2
2
D. e.
1 π3
e .
2
8
Câu 60. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 82.
C. 64.
D. 96.
!4x
!2−x
2
3
Câu 61. Tập các số x thỏa mãn
≤
là
#
" 3 ! 2
"
!
#
2
2
2
2
A. −∞; .
B.
; +∞ .
C. − ; +∞ .
D. −∞; .
5
5
3
3
D.
Câu 62. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
B.
.
C. 5.
D. 7.
A. .
2
2
Câu 63. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = ln 10.
C. f 0 (0) = 10.
D. f 0 (0) = 1.
ln 10
Câu 64. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt
√
a2 5
11a2
a2 7
a2 2
.
B.
.
C.
.
D.
.
A.
4
16
32
8
Câu 65. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 30.
C. 20.
D. 8.
0 0 0 0
0
Câu 66.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.
.
7
2
2
3
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 67. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 1.
B. 2.
C. .
D. −1.
2
Câu 68. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 4).
D. (2; 4; 6).
Trang 5/10 Mã đề 1
Câu 69. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 22016 .
C. 1.
D. e2016 .
Câu 70. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D. Khối bát diện đều.
Câu 71. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 5
a3 15
a3
a3 15
.
B.
.
C.
.
D.
.
A.
25
25
5
3
Câu 72. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. 2e2 .
D. −2e2 .
Câu 73. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 24 m.
C. 8 m.
D. 12 m.
[ = 60◦ , S O
Câu 74. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng
√
√
a 57
2a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
19
19
17
Câu 75. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 76. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. 2.
B. .
C. − .
2
2
Câu 77. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.
C. 12.
D. −2.
D. 20.
Câu 78. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
48
24
8
24
Câu 79. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.
D. {5; 3}.
Câu 80. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a
a 3
A. .
B. .
C.
.
D. a.
2
3
2
q
2
Câu 81. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Câu 82. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
A.
.
B.
.
C. 2a 2.
D. a 2.
2
4
Trang 6/10 Mã đề 1
Câu 83. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng −∞; .
A. Hàm số nghịch biến trên khoảng ; 1 .
3
! 3
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng ; 1 .
3
!2x−1
!2−x
3
3
Câu 84. Tập các số x thỏa mãn
≤
là
5
5
A. [1; +∞).
B. (−∞; 1].
C. [3; +∞).
D. (+∞; −∞).
Câu 85. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = x + ln x.
C. y0 = 1 − ln x.
D. y0 = 1 + ln x.
Câu 86. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
1
Câu 87. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2) ∪ (−1; +∞). C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.
Câu 88. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m < 0.
D. m , 0.
Z 1
6
2
3
. Tính
f (x)dx.
Câu 89. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. 6.
B. 4.
x − 3x + 3
Câu 90. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 1.
C. −1.
D. 2.
2
C. x = 3.
D. x = 0.
2
x
Câu 91. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = 1.
C. M = e, m = 0.
D. M = e, m = .
e
e
3
2
Câu 92. Tìm m để hàm số y = mx + 3x + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −2.
C. m = −1.
D. m = 0.
Câu 93. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 18 lần.
Câu 94. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −2 ≤ m ≤ 2.
C. m ≥ 3.
D. −3 ≤ m ≤ 3.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 95. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 3.
B. 5.
C. 4.
D. 2.
1
Câu 96. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (1; +∞).
C. D = R \ {1}.
1
Câu 97. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −2.
C. −1.
D. D = (−∞; 1).
D. 2.
Trang 7/10 Mã đề 1
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Câu 98. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.
Câu 99. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
4
12
6
3a
Câu 100. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
2a
a 2
a
a
A.
.
B.
.
C. .
D. .
3
3
4
3
3
2
x
Câu 101. [2] Tìm m để giá trị nhỏ nhất
√ của hàm số y = 2x + (m
√ + 1)2 trên [0; 1] bằng 2
A. m = ±1.
B. m = ± 2.
C. m = ± 3.
D. m = ±3.
Câu 102. [1] Tính lim
1
A. − .
2
1 − n2
bằng?
2n2 + 1
1
B. .
2
C. 0.
Câu 103. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. 4.
C. −4.
D.
1
.
3
D. −2.
Câu 104. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
C. 18.
D. 12.
A. 27.
B.
2
Câu 105. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
3
3
3
2a
2a 3
4a3
4a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 106. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 107. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 64cm3 .
C. 48cm3 .
D. 84cm3 .
x−3
Câu 108. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. 0.
C. +∞.
D. 1.
2n − 3
Câu 109. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. +∞.
C. 0.
D. 1.
Trang 8/10 Mã đề 1
[ = 60◦ , S O
Câu 110. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S BC) bằng
√
√ với mặt đáy và S O = a.
√
a 57
2a 57
a 57
.
B.
.
C. a 57.
D.
.
A.
17
19
19
2−n
Câu 111. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 1.
C. 0.
D. −1.
Câu 112. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −10.
C. P = 10.
D. P = −21.
Câu 113. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
C. Khối 20 mặt đều.
D. Khối tứ diện đều.
Câu 114. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 115. Bát diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.
D. {4; 3}.
d = 60◦ . Đường chéo
Câu 116. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
3
√
4a3 6
2a3 6
6
a
A.
.
B.
.
C. a3 6.
.
D.
3
3
3
Câu 117. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
C. lim qn = 0 (|q| > 1).
1
= 0.
nk
1
D. lim = 0.
n
B. lim
Câu 118. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 9.
C. 0.
D. 13.
√3
4
Câu 119. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5
7
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
2
Câu 120. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
√
3
3
3
3
4a 3
8a 3
a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
x+1
Câu 121. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
6
2
3
2mx + 1
1
Câu 122. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. −5.
C. 1.
D. 0.
Câu 123. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 3.
C. 5.
Câu 124. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Ba mặt.
C. Bốn mặt.
D. 2.
D. Một mặt.
Trang 9/10 Mã đề 1
Câu 125. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 135.
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e
C. S = 22.
Câu 126. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (0; −2).
C. (−1; −7).
D. S = 32.
D. (2; 2).
Câu 127. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 128. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
.
B. 1.
C. .
D. 2.
A.
2
2
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 129. Cho hình chóp S .ABC có BAC
(ABC). Thể
√
√ tích khối chóp S .ABC là
√
3
3
3
√
a
a 3
a
2
3
.
B. 2a2 2.
.
D.
.
A.
C.
24
24
12
Câu 130. Trong các khẳng định sau, khẳng định nào sai?
√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. Cả ba đáp án trên.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
B
3.
B
5. A
6.
B
7. A
8.
B
9.
C
C
10.
C
11.
12.
C
13.
B
B
14.
B
15.
16.
B
17. A
18.
C
19.
20.
C
21. A
22.
C
23.
24. A
D
B
25. A
26.
B
27.
28.
B
29.
D
31.
D
30.
32.
C
B
34.
33. A
C
35.
36. A
38.
40.
B
C
B
37.
D
39.
D
41.
C
C
43.
C
44.
45.
C
46. A
47. A
B
48. A
49.
D
51.
50. A
52.
C
53. A
D
54. A
55.
C
56.
C
57. A
58.
C
59. A
60. A
61.
C
62. A
64.
D
66.
D
67. A
68.
D
69. A
70. A
63.
65.
B
C
1
71. A
72. A
73. A
74. A
75. A
76.
D
77.
D
78.
D
79.
D
80.
D
C
81.
82. A
83. A
84. A
85.
D
86.
D
87.
D
88.
D
89.
B
91.
93.
C
97.
C
92.
B
96.
D
B
98. A
B
99.
B
94.
B
95.
90.
C
100. A
101. A
102. A
103.
D
104.
C
105.
D
106.
C
107.
B
109.
108.
C
111.
D
B
110.
D
112.
D
113. A
114.
115. A
116.
C
118.
C
117.
C
D
119.
120. A
121. A
122.
123. A
124.
D
125.
127.
129.
B
126.
128.
B
C
130. A
2
D
C
B
D