Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
trị nhỏ
" nhất
! của biểu thức P = x + 2y thuộc tập nào dưới "đây?!
5
5
A.
;3 .
B. (1; 2).
C. 2; .
D. [3; 4).
2
2
√
ab. Giá
Câu 2. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
Câu 3. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
!
1
B. Hàm số nghịch biến trên khoảng ; 1 .
3!
1
D. Hàm số đồng biến trên khoảng ; 1 .
3
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
3
Câu 4. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
A.
.
B. .
n
n
C.
n+1
.
n
1
D. √ .
n
Câu 5. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 2400 m.
C. 1202 m.
D. 1134 m.
√
√
Câu 6. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
A. 0 ≤ m ≤ .
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4
4
Câu 7. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lập phương.
C. Hình chóp.
D. Hình lăng trụ.
2
2
x2
Câu 8. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = e, m = 1.
C. M = , m = 0.
D. M = e, m = .
e
e
Câu 9. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.
B. 2.
C. 1.
D. 4.
√
Câu 10. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
6
18
36
Trang 1/10 Mã đề 1
Câu 11. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 7 mặt.
D. 8 mặt.
Câu 12. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −5.
C. −15.
D. −12.
Câu 13. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 14. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−∞; 0) và (1; +∞). C. (0; 1).
D. (−1; 0).
Câu 15. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
9
18
6
Câu 16. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
x−2
Câu 17. Tính lim
x→+∞ x + 3
2
B. 1.
A. − .
3
C. Khối bát diện đều.
D. Khối 20 mặt đều.
C. 2.
D. −3.
Câu 18. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. Không tồn tại.
C. −5.
D. −7.
Câu 19. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 13.
C. 2020.
D. log2 13.
0 0 0 0
0
Câu 20.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
2
3
7
2
log2 240 log2 15
Câu 21. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. −8.
C. 4.
D. 3.
Câu 22. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 9.
B. 27.
C. 8.
D. 3 3.
Câu 23. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 22.
C. y(−2) = 2.
D. y(−2) = 6.
Câu 24. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng
√
√
√
a 6
A.
.
B. a 6.
C. 2a 6.
D. a 3.
2
Câu 25. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
4a 3
2a3 3
a3 3
5a3 3
A.
.
B.
.
C.
.
D.
.
3
3
2
3
Trang 2/10 Mã đề 1
Câu 26. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≥ .
D. m ≤ .
4
4
4
4
3
2
Câu 27. Tìm giá trị của tham số m để hàm số y = −x + 3mx + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [1; +∞).
C. [−1; 3].
D. [−3; 1].
Câu 28. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
Câu 29. [4] Xét hàm số f (t) = t
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 1.
C. 0.
D. 2.
Câu 30. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 8 mặt.
C. 6 mặt.
D. 4 mặt.
Câu 31. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 25 m.
D. 1587 m.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 32. Tìm m để hàm số y =
x+m
A. 67.
B. 26.
C. 34.
D. 45.
Câu 33. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 12.
C. 18.
D. 27.
2
[ = 60◦ , S A ⊥ (ABCD).
Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là
√
3
3
√
a3 2
a
2
a
3
A.
.
B. a3 3.
C.
.
D.
.
12
4
6
Câu 35. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. n2 lần.
D. 3n3 lần.
Câu 36. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 30.
C. 8.
D. 20.
Câu 37. [2-c] Giá trị lớn nhất của hàm số y = xe
2
1
B. 3 .
A. 2 .
e
e
trên đoạn [1; 2] là
1
C. √ .
2 e
D.
Câu 38. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 8.
C. 4.
D. 6.
−2x2
1
.
2e3
Câu 39. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
2
2
sin x
Câu 40.
+ 2cos x lần lượt
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm√số f (x) = 2
√ là
A. 2 2 và 3.
B. 2 và 3.
C. 2 và 3.
D. 2 và 2 2.
Câu 41. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 12.
C. 30.
D. 8.
Trang 3/10 Mã đề 1
Câu 42. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −e2 .
C. −2e2 .
1
Câu 43. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. .
B. −3.
C. − .
3
3
log √a 5
bằng
Câu 44. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
1
A. 25.
B. .
C. 5.
5
√
√
Câu 45.
√ Tìm giá trị lớn nhất của hàm
√ số y = x + 3 + 6 − x
A. 2 3.
B. 2 + 3.
C. 3.
D. 2e2 .
D. 3.
√
D.
5.
√
D. 3 2.
Câu 46. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 47. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có vơ số.
C. Có hai.
D. Khơng có.
Câu 48. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 18 lần.
Câu 49. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị lớn nhất trên K.
B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) xác định trên K.
Câu 50. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (2; 2).
C. (−1; −7).
D. (1; −3).
0
Câu 51. Cho hai đường thẳng phân biệt d và d đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Khơng có.
D. Có một.
Câu 52. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
.
B. a 3.
C.
.
D. a 2.
A.
2
3
Câu 53. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 54. Tính lim
x→2
A. 0.
x+2
bằng?
x
B. 2.
Câu 55. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 0.
C. 1.
D. 3.
C. 7.
D. 5.
Trang 4/10 Mã đề 1
Câu 56. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3
3
4a 3
a3
a3
2a 3
.
B.
.
C.
.
D.
.
A.
3
3
6
3
Câu 57. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. Cả ba câu trên đều sai.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 58. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 15 tháng.
C. 17 tháng.
D. 16 tháng.
Câu 59. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −2.
C. m = −3.
D. m = −1.
2n + 1
Câu 60. Tìm giới hạn lim
n+1
A. 3.
B. 0.
C. 2.
D. 1.
1
Câu 61. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (1; 3).
C. (1; +∞).
D. (−∞; 1) và (3; +∞).
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 62. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 2
a3 3
A.
.
B.
.
C.
.
D. 2a2 2.
24
24
12
12 + 22 + · · · + n2
Câu 63. [3-1133d] Tính lim
n3
2
1
B. +∞.
C. 0.
D. .
A. .
3
3
[ = 60◦ , S O
Câu 64. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng
√
2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
Câu 65. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.
B. Chỉ có (II) đúng.
C. Cả hai câu trên đúng. D. Chỉ có (I) đúng.
Câu 66. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 64cm3 .
C. 72cm3 .
D. 27cm3 .
Trang 5/10 Mã đề 1
Câu 67. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
Câu 68. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 0.
D. 22016 .
Z 1
Câu 69. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
A. 1.
Câu 70. Tính giới hạn lim
A.
3
.
2
B. 0.
2n + 1
3n + 2
1
B. .
2
1
.
2
D.
1
.
4
C. 0.
D.
2
.
3
C.
Câu 71. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. Không tồn tại.
C. 0.
D. 9.
Câu 72. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = (0; +∞).
C. D = R.
D. D = R \ {0}.
C. y = x4 − 2x + 1.
D. y =
Câu 73. Hàm số nào sau đây khơng có cực trị
1
B. y = x3 − 3x.
A. y = x + .
x
x−2
.
2x + 1
Câu 74. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. β = a β .
B. aα+β = aα .aβ .
C. aαβ = (aα )β .
D. aα bα = (ab)α .
a
d = 60◦ . Đường chéo
Câu 75. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
2a3 6
4a3 6
a3 6
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
Câu 76. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 22.
C. 23.
D. 24.
Câu 77. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
Câu 78. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 12.
C. 20.
D. 8.
Câu 79. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 25 triệu đồng.
D. 3, 03 triệu đồng.
Trang 6/10 Mã đề 1
Câu 80. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2
A. −1.
B. 6.
3
C. 2.
Z
6
3x + 1
1
. Tính
f (x)dx.
0
D. 4.
Câu 81. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; 8).
C. A(−4; −8)(.
D. A(4; 8).
Câu 82. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
√
Câu 83. Cho chóp S .ABCD có đáy ABCD là hình vuông cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
√
a3
a3 3
a3 3
3
A.
D.
.
B.
.
C. a 3.
.
4
12
3
Câu 84. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 9 mặt.
Câu 85. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B. a3 .
C.
.
D.
.
A.
6
12
24
Câu 86. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 24 m.
C. 16 m.
D. 8 m.
!
1
1
1
Câu 87. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
D. .
A. 2.
B. +∞.
C. .
2
2
Câu 88.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
k f (x)dx = f
A.
Z
C.
f (x)g(x)dx =
Z
f (x)dx, k ∈ R, k , 0.
Z
f (x)dx g(x)dx.
( f (x) + g(x))dx =
B.
Z
D.
( f (x) − g(x))dx =
f (x)dx +
Z
g(x)dx.
Z
f (x)dx −
g(x)dx.
!
!
!
4x
1
2
2016
Câu 89. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 2016.
C. T = 1008.
D. T =
.
2017
d = 300 .
Câu 90. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √
√
√
3a3 3
a3 3
A. V =
.
B. V = 6a3 .
C. V =
.
D. V = 3a3 3.
2
2
x−1
Câu 91. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB
√ có độ dài bằng
√
A. 2.
B. 2 3.
C. 2 2.
D. 6.
Câu 92. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 2.
C. 0, 5.
D. 0, 3.
Trang 7/10 Mã đề 1
Câu 93. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
là
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD
√
3
3
a
a
a3
3
3
A. a3 .
B.
.
C.
.
D.
.
3
9
3
√
Câu 94. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vô số.
C. 63.
D. 64.
2
2n − 1
Câu 95. Tính lim 6
3n + n4
2
A. 2.
B. 0.
C. .
D. 1.
3
Câu 96. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√ S H ⊥ (ABCD), S A =
√a 5. Thể tích khối chóp3 S .ABCD là
3
3
2a 3
4a 3
2a
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 97. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
6
24
36
Câu 98. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≥ 3.
C. m ≤ 3.
D. −3 ≤ m ≤ 3.
Câu 99. Biểu thức nào sau đây khơng có nghĩa
A. (−1)−1 .
B. 0−1 .
Câu 100. Tính lim
A. 0.
2n − 3
bằng
+ 3n + 1
B. −∞.
2n2
C.
√
−1.
−3
C. +∞.
√
D. (− 2)0 .
D. 1.
Câu 101. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (1; 3; 2).
C. (2; 4; 3).
D. (2; 4; 6).
d = 30◦ , biết S BC là tam giác đều
Câu 102. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
26
9
16
13
2−n
Câu 103. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 0.
C. 2.
D. 1.
Câu 104. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
c+2
c+2
c+1
D.
3b + 2ac
.
c+3
Câu 105. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tam giác.
Trang 8/10 Mã đề 1
Câu 106. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 107. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.
C. 4.
D. 3.
Câu 108. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
.
C. 2.
A. 1.
B.
2
Câu 109. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {3; 5}.
Câu 110. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 2
A. un =
.
B.
u
=
.
n
5n + n2
5n − 3n2
C. un =
D.
1
.
2
D. {5; 3}.
n2 − 3n
.
n2
√
Câu 111. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
B. .
C. 3.
A. − .
3
3
Câu 112.
[1233d-2] ZMệnh đề nào sau đây sai?
Z
D. un =
n2 + n + 1
.
(n + 1)2
D. −3.
k f (x)dx = k
A.
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Câu 113.
Các khẳngZđịnh nào sau đây là sai?
Z
Z
C.
!0
f (x)dx = f (x).
f (x)dx, k là hằng số.
B.
Z
Z
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
k f (x)dx = k
A.
Z
a
1
Câu 114. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 4.
C. 7.
D. 2.
1
Câu 115. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 3.
C. 1.
D. 2.
9x
Câu 116. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. −1.
C. 1.
D. 2.
2
Câu 117. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
14 3
20 3
A. 6 3.
B.
.
C.
.
D. 8 3.
3
3
Câu 118. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√ là
3
3
3
3
8a 3
8a 3
4a 3
a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
Trang 9/10 Mã đề 1
Câu 119. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 91cm3 .
C. 48cm3 .
D. 64cm3 .
Câu 120. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 24.
B. 3, 55.
C. 15, 36.
D. 20.
Câu 121. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
B. V = S h.
C. V = 3S h.
D. V = S h.
A. V = S h.
2
3
Câu 122. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên n lần.
B. Tăng lên (n − 1) lần. C. Giảm đi n lần.
D. Không thay đổi.
!2x−1
!2−x
3
3
Câu 123. Tập các số x thỏa mãn
≤
là
5
5
A. (−∞; 1].
B. (+∞; −∞).
C. [3; +∞).
D. [1; +∞).
Câu 124. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
8
4
12
log 2x
Câu 125. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
1
0
0
.
B. y0 =
.
C.
y
=
.
D.
y
=
.
A. y0 = 3
2x ln 10
x3
x3 ln 10
2x3 ln 10
Câu 126. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. .
C. 2e.
D. 3.
e
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 127. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e − 1.
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
Câu 128. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 4.
C. 10.
√
Câu 129. Thể tích của khối lập phương có cạnh bằng a 2
√
√
A. V = a3 2.
B. 2a3 2.
C. V = 2a3 .
Câu 130. [1-c] Giá trị của biểu thức
A. −2.
B. −4.
log7 16
log7 15 − log7
15
30
D. 6.
√
2a3 2
D.
.
3
bằng
C. 4.
D. 2.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.
2.
B
4.
C
5. A
6.
C
7. A
8. A
B
9. A
10.
11. A
12.
D
D
13.
B
14.
16.
B
17.
18.
B
19.
20.
B
21.
D
22.
24.
C
B
D
B
23. A
B
C
25.
26.
D
27.
D
28.
D
29.
D
30.
C
31.
32.
C
33.
34.
C
35.
36. A
D
B
D
39.
40. A
B
41.
C
43.
C
45.
44. A
46.
C
37. A
38.
42.
B
47.
B
48.
C
51.
52. A
53.
54.
B
55. A
56.
B
57. A
D
58.
C
49. A
50. A
60.
D
59.
C
B
C
B
61.
D
D
62.
B
63.
64.
B
65.
C
67.
C
69.
C
66.
68.
D
C
1
70.
D
73.
C
72.
74. A
76.
C
71.
75.
D
B
D
77.
B
78. A
79. A
D
80.
81.
D
D
82.
C
83.
85.
C
86.
C
88.
C
87. A
C
89.
91.
92.
B
93.
95.
90. A
D
94. A
B
97. A
99.
D
96.
D
98.
D
100. A
B
101.
D
102.
103. A
104.
D
B
105.
C
106.
C
107.
C
108.
C
109.
C
110. A
111.
B
112. A
113.
D
115.
C
117. A
D
B
123.
D
125.
116.
C
120.
C
122.
C
124.
B
126.
C
127. A
129.
C
118. A
119.
121.
114.
D
128. A
B
130.
2
B